cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 51 results. Next

A296839 Expansion of e.g.f. tan(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, 33, 437, 22205, 978873, 81005113, 7356832669, 949918117653, 142805534055905, 27120922891214801, 6016195462632487941, 1592800634594574194413, 486576430503128985793417, 171866951067212728072402665, 69025662074064538734826793453
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			tan(x*tan(x/2)) = x^2/2! + x^4/4! + 33*x^6/6! + 437*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Tan[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] tan(x*tan(x/2)).
a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 16/Pi^2 = 1.621138938277404343102071411355642222469740394755... is the root of the equation tan(1/sqrt(d)) = Pi*sqrt(d)/4 and c = 1.75568815831... - Vaclav Kotesovec, Dec 21 2017, updated Mar 16 2024

A009752 Expansion of e.g.f. tan(x)*x (even powers only).

Original entry on oeis.org

0, 2, 8, 96, 2176, 79360, 4245504, 313155584, 30460116992, 3777576173568, 581777702256640, 108932957168730112, 24370173276164456448, 6419958484945407574016, 1967044844910430876860416, 693575525634287935244206080, 278846808228005417477465964544, 126799861926498005417315327279104
Offset: 0

Views

Author

Keywords

Examples

			2*x/(1+e^(2*x)) = 0 + x - 2/2!*x^2 + 8/4!*x^4 - 96/6!*x^6 + 2176/8!*x^8 ...
		

Crossrefs

Programs

  • Maple
    a := n -> 4^n*n*`if`(n=0,0,abs(euler(2*n-1, 0))): # Peter Luschny, Jun 09 2016
  • Mathematica
    nn = 30; t = Range[0, nn]! CoefficientList[Series[x*Tan[x], {x, 0, nn}], x]; Take[t, {1, nn + 1, 2}] (* T. D. Noe, Sep 20 2012 *)
    Table[(-1)^n 4 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *)
  • PARI
    my(x='x+O('x^50)); v=Vec(serlaplace(x*tan(x))); concat([0], vector(#v\2,n,v[2*n-1])) \\ G. C. Greubel, Feb 12 2018

Formula

a(n) = n 4^n |E_{2n-1}(1/2)+E_{2n-1}(1)| for n > 0; E_{n}(x) Euler polynomials. - Peter Luschny, Nov 25 2010
a(n) = (2*n)! * [x^(2*n)] tan(x)*x.
a(n) = 2*(2*n)!*Pi^(-2*n)*(4^n-1)*Li{2*n}(1) for n > 0. - Peter Luschny, Jun 29 2012
E.g.f.: sqrt(x)*tan(sqrt(x))= sum(n>=0, a(n)*x^n/(2*n)! ) = x/T(0) where T(k)= 1 - 4*k^2 + x*(1 - 4*k^2)/T(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 19 2012
E.g.f.: -1 - x^(1/2)- Q(0),where Q(k) = 4*k -1 - x/( 1 - x/ (4*k+1 + x/( 1 + x/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013
From Peter Luschny, Jun 09 2016: (Start)
a(n) = (4^n-16^n)*Sum_{k=0..2*n} (-1)^(n-k)*Stirling2(2*n, k)*k!/(k+1).
2*a(n)/4^n = A110501(n) for n>=1.
a(n) / 2^n = A117513(n) for n>=1. (End)
a(n) ~ (4*(4^(2*n)-2^(2*n)))*Pi*(n/(Pi*e))^(2*n+1/2)*exp(1/2+1/(24*n)-1/(2880*n^3) +1/(40320*n^5)-...). - Peter Luschny, Jan 16 2017
a(n) = (-1)^n*4*n*PolyLog(1 - 2*n, -i). - Peter Luschny, Aug 17 2021
a(n) = 2*A024255(n). - Alois P. Heinz, Aug 17 2021

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997

A296841 Expansion of e.g.f. sin(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, -12, -193, -2365, -18552, 500689, 48649969, 2981261772, 169237306055, 9187565146331, 427287357700176, 6011297159973313, -2887128048794477663, -711942625068679870620, -132369975517302093882097, -22968753773651295426439021
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			sin(x*tan(x/2)) = x^2/2! + x^4/4! - 12*x^6/6! - 193*x^8/8! - 2365*x^10/10! - 18552*x^12/12! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Sin[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sin(x*tan(x/2)).

A296842 Expansion of e.g.f. cos(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 0, -3, -15, -14, 1755, 60357, 1740284, 45816165, 776485557, -37342503290, -7203185712261, -822818831400759, -85463040449605000, -8640073895507612019, -843669753827174738535, -73050419139737972150438, -3478007209663880122501701
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			cos(x*tan(x/2)) = 1 - 3*x^4/4! - 15*x^6/6! - 14*x^8/8! + 1755*x^10/10! + 60357*x^12/12! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Cos[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] cos(x*tan(x/2)).

A296853 Expansion of e.g.f. tanh(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, -27, -403, 8345, 688473, -208019, -3189211931, -162605047455, 28806493001105, 5257860587364341, -288068264497990179, -230932276247139756887, -14420179324444754436023, 13944106915630111553887485, 3643613240568912544562868053
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			tanh(x*tan(x/2)) = x^2/2! + x^4/4! - 27*x^6/6! - 403*x^8/8! + 8345*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Tanh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] tanh(x*tan(x/2)).

A296854 Expansion of e.g.f. sinh(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, 18, 227, 4565, 126648, 4620805, 213569269, 12165013026, 835868220455, 68093897815361, 6483538063860336, 712877916658802713, 89586864207214060057, 12753583150716684461970, 2040805972702652020364603, 364567588100855831300341565
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			sinh(x*tan(x/2)) = x^2/2! + x^4/4! + 18*x^6/6! + 227*x^8/8! + 4565*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Sinh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sinh(x*tan(x/2)).

A296856 Expansion of e.g.f. cosh(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 0, 3, 15, 224, 4545, 126753, 4626076, 213703095, 12167727543, 835893746300, 68091766034061, 6483302813035857, 712860388963255000, 89585739948801890619, 12753524767335858733935, 2040804997678590563632568, 364567987004433619078313961
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			cosh(x*tan(x/2)) = 1 + 3*x^4/4! + 15*x^6/6! + 224*x^8/8! + 4545*x^10/10! + 126753*x^12/12! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Cosh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] cosh(x*tan(x/2)).

A117513 Number of ways of arranging 2*n tokens in a row, with 2 copies of each token from 1 through n, such that between every pair of tokens labeled i (i = 1..n-1) there is exactly one taken labeled i+1.

Original entry on oeis.org

1, 2, 12, 136, 2480, 66336, 2446528, 118984832, 7378078464, 568142287360, 53189920492544, 5949749335001088, 783686338494312448, 120058889459865165824, 21166245289132322242560, 4254864627502524070395904, 967406173145278971994898432, 247007221085479721384365129728
Offset: 1

Views

Author

Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006

Keywords

Comments

From Paul Barry, Oct 12 2009: (Start)
The aerated sequence is (2^(n/2 - 1) + 0^(n/2)/2)*((1 + (-1)^n)/2)*n!*[x^n](1 + x*tan(x/2)).
Multiples of the unsigned Genocchi numbers A110501: (1, 1, 3, 17, 155,...)*(1, 2, 4, 8, 16,...). (End)

Crossrefs

Programs

  • Maple
    a := n -> (-2)^n*(1 - 2^(2*n))*bernoulli(2*n);
    seq(a(n), n = 1..18); # Peter Luschny, Jul 26 2021
  • Mathematica
    Array[(-2)^#*(1 - 2^(2 #))*BernoulliB[2 #] &, 18] (* Michael De Vlieger, Jul 26 2021 *)
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A117513_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; z = 1/2; b = True
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1, 0, -1) : D[k] += D[k+1]
                z *= 2
            else :
                for k in range(1, h+1, 1) :  D[k] += D[k-1]
            b = not b
            if b : R.append(D[h]*z)
        return R
    A117513_list(15) # Peter Luschny, Jun 29 2012

Formula

G.f.: 1/(1-2*x/(1-4*x/(1-8*x/(1-12*x/(1-18*x/(1-24*x/(1-32*x/(1-.../(1-2* floor((n+2)^2/4)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
G.f.: T(0), where T(k) = 1 - x*(2*k+2)*(k+1)/( x*(2*k+2)*(k+1) - 1/( 1 - x*(2*k+2)*(k+2)/( x*(2*k+2)*(k+2) - 1/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = (-2)^n*(1 - 2^(2*n))*Bernoulli(2*n). - Peter Luschny, Jul 26 2021

Extensions

More terms from Paul Barry, Oct 12 2009

A211183 Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 1, 3, 3, 6, 6, 10, 10, 15, ...) DELTA (1, 0, 2, 0, 3, 0, 4, 0, 5, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 4, 1, 0, 7, 19, 11, 1, 0, 38, 123, 107, 26, 1, 0, 295, 1076, 1195, 474, 57, 1, 0, 3098, 12350, 16198, 8668, 1836, 120, 1, 0, 42271, 180729, 268015, 176091, 52831, 6549, 247, 1, 0, 726734, 3290353, 5369639, 4105015, 1564817, 287473, 22145
Offset: 0

Views

Author

Philippe Deléham, Feb 02 2013

Keywords

Examples

			Triangle begins :
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 7, 19, 11, 1;
0, 38, 123, 107, 26, 1;
0, 295, 1076, 1195, 474, 57, 1;
0, 3098, 12350, 16198, 8668, 1836, 120, 1;
0, 42271, 180729, 268015, 176091, 52831, 6549, 247, 1;
0, 726734, 3290353, 5369639, 4105015, 1564817, 287473, 22145, 502, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=polcoeff(polcoeff(sum(m=0, n, m!*x^m*prod(k=1, m, (y + (k-1)/2)/(1+(k*y+k*(k-1)/2)*x+x*O(x^n)))), n,x),k,y)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Feb 03 2013

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k) = A000012(n), A000366(n+1), A110501(n+1), A211194(n), A221972(n) for x = 0, 1, 2, 3, 4 respectively.
T(n,n-1) = A000295(n).
T(n,1) = A000366(n).
G.f.: A(x,y) = Sum_{n>=0} n! * x^n * Product_{k=1..n} (y + (k-1)/2) / (1 + (k*y + k*(k-1)/2)*x). - Paul D. Hanna, Feb 03 2013

A085707 Triangular array A065547 unsigned and transposed.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 17, 17, 0, 1, 10, 55, 155, 155, 0, 1, 15, 135, 736, 2073, 2073, 0, 1, 21, 280, 2492, 13573, 38227, 38227, 0, 1, 28, 518, 6818, 60605, 330058, 929569, 929569, 0, 1, 36, 882, 16086, 211419, 1879038, 10233219, 28820619
Offset: 0

Views

Author

Philippe Deléham, Jul 19 2003

Keywords

Examples

			1;
1,  0;
1,  1,  0;
1,  3,  3,   0;
1,  6, 17,  17,   0;
1, 10, 55, 155, 155, 0;
...
		

References

  • Louis Comtet, Analyse Combinatoire, PUF, 1970, Tome 2, pp. 98-99.

Crossrefs

Row sums Sum_{k>=0} T(n, k) = A006846(n), values of Hammersley's polynomial p_n(1).
Sum_{k>=0} 2^k*T(n, k) = A005647(n), Salie numbers.
Sum_{k>=0} 3^k*T(n, k) = A094408(n).
Sum_{k>=0} 4^k*T(n, k) = A000364(n), Euler numbers.

Programs

  • Mathematica
    h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First // Abs // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)

Formula

Sum_{k >= 0} (-1/2)^k*T(n, k) = (1/2)^n.
Sum_{k >= 0} (-1/6)^k*T(n, k) = (4^(n+1)- 1)/3*(6^n).
Equals A000035 DELTA [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...], where DELTA is Deléham's operator defined in A084938.
T(n,n-1) = A110501(n), Genocchi numbers of first kind of even index. - Philippe Deléham, Feb 16 2007
Previous Showing 11-20 of 51 results. Next