A296839
Expansion of e.g.f. tan(x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, 1, 33, 437, 22205, 978873, 81005113, 7356832669, 949918117653, 142805534055905, 27120922891214801, 6016195462632487941, 1592800634594574194413, 486576430503128985793417, 171866951067212728072402665, 69025662074064538734826793453
Offset: 0
tan(x*tan(x/2)) = x^2/2! + x^4/4! + 33*x^6/6! + 437*x^8/8! + ...
-
nmax = 16; Table[(CoefficientList[Series[Tan[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A009752
Expansion of e.g.f. tan(x)*x (even powers only).
Original entry on oeis.org
0, 2, 8, 96, 2176, 79360, 4245504, 313155584, 30460116992, 3777576173568, 581777702256640, 108932957168730112, 24370173276164456448, 6419958484945407574016, 1967044844910430876860416, 693575525634287935244206080, 278846808228005417477465964544, 126799861926498005417315327279104
Offset: 0
2*x/(1+e^(2*x)) = 0 + x - 2/2!*x^2 + 8/4!*x^4 - 96/6!*x^6 + 2176/8!*x^8 ...
-
a := n -> 4^n*n*`if`(n=0,0,abs(euler(2*n-1, 0))): # Peter Luschny, Jun 09 2016
-
nn = 30; t = Range[0, nn]! CoefficientList[Series[x*Tan[x], {x, 0, nn}], x]; Take[t, {1, nn + 1, 2}] (* T. D. Noe, Sep 20 2012 *)
Table[(-1)^n 4 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *)
-
my(x='x+O('x^50)); v=Vec(serlaplace(x*tan(x))); concat([0], vector(#v\2,n,v[2*n-1])) \\ G. C. Greubel, Feb 12 2018
A296841
Expansion of e.g.f. sin(x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, 1, -12, -193, -2365, -18552, 500689, 48649969, 2981261772, 169237306055, 9187565146331, 427287357700176, 6011297159973313, -2887128048794477663, -711942625068679870620, -132369975517302093882097, -22968753773651295426439021
Offset: 0
sin(x*tan(x/2)) = x^2/2! + x^4/4! - 12*x^6/6! - 193*x^8/8! - 2365*x^10/10! - 18552*x^12/12! + ...
-
nmax = 17; Table[(CoefficientList[Series[Sin[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296842
Expansion of e.g.f. cos(x*tan(x/2)) (even powers only).
Original entry on oeis.org
1, 0, -3, -15, -14, 1755, 60357, 1740284, 45816165, 776485557, -37342503290, -7203185712261, -822818831400759, -85463040449605000, -8640073895507612019, -843669753827174738535, -73050419139737972150438, -3478007209663880122501701
Offset: 0
cos(x*tan(x/2)) = 1 - 3*x^4/4! - 15*x^6/6! - 14*x^8/8! + 1755*x^10/10! + 60357*x^12/12! + ...
-
nmax = 17; Table[(CoefficientList[Series[Cos[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296853
Expansion of e.g.f. tanh(x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, 1, -27, -403, 8345, 688473, -208019, -3189211931, -162605047455, 28806493001105, 5257860587364341, -288068264497990179, -230932276247139756887, -14420179324444754436023, 13944106915630111553887485, 3643613240568912544562868053
Offset: 0
tanh(x*tan(x/2)) = x^2/2! + x^4/4! - 27*x^6/6! - 403*x^8/8! + 8345*x^10/10! + ...
-
nmax = 16; Table[(CoefficientList[Series[Tanh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296854
Expansion of e.g.f. sinh(x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, 1, 18, 227, 4565, 126648, 4620805, 213569269, 12165013026, 835868220455, 68093897815361, 6483538063860336, 712877916658802713, 89586864207214060057, 12753583150716684461970, 2040805972702652020364603, 364567588100855831300341565
Offset: 0
sinh(x*tan(x/2)) = x^2/2! + x^4/4! + 18*x^6/6! + 227*x^8/8! + 4565*x^10/10! + ...
-
nmax = 17; Table[(CoefficientList[Series[Sinh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296856
Expansion of e.g.f. cosh(x*tan(x/2)) (even powers only).
Original entry on oeis.org
1, 0, 3, 15, 224, 4545, 126753, 4626076, 213703095, 12167727543, 835893746300, 68091766034061, 6483302813035857, 712860388963255000, 89585739948801890619, 12753524767335858733935, 2040804997678590563632568, 364567987004433619078313961
Offset: 0
cosh(x*tan(x/2)) = 1 + 3*x^4/4! + 15*x^6/6! + 224*x^8/8! + 4545*x^10/10! + 126753*x^12/12! + ...
-
nmax = 17; Table[(CoefficientList[Series[Cosh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A117513
Number of ways of arranging 2*n tokens in a row, with 2 copies of each token from 1 through n, such that between every pair of tokens labeled i (i = 1..n-1) there is exactly one taken labeled i+1.
Original entry on oeis.org
1, 2, 12, 136, 2480, 66336, 2446528, 118984832, 7378078464, 568142287360, 53189920492544, 5949749335001088, 783686338494312448, 120058889459865165824, 21166245289132322242560, 4254864627502524070395904, 967406173145278971994898432, 247007221085479721384365129728
Offset: 1
Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006
-
a := n -> (-2)^n*(1 - 2^(2*n))*bernoulli(2*n);
seq(a(n), n = 1..18); # Peter Luschny, Jul 26 2021
-
Array[(-2)^#*(1 - 2^(2 #))*BernoulliB[2 #] &, 18] (* Michael De Vlieger, Jul 26 2021 *)
-
# Algorithm of L. Seidel (1877)
# n -> [a(1), ..., a(n)] for n >= 1.
def A117513_list(n) :
D = [0]*(n+2); D[1] = 1
R = []; z = 1/2; b = True
for i in(0..2*n-1) :
h = i//2 + 1
if b :
for k in range(h-1, 0, -1) : D[k] += D[k+1]
z *= 2
else :
for k in range(1, h+1, 1) : D[k] += D[k-1]
b = not b
if b : R.append(D[h]*z)
return R
A117513_list(15) # Peter Luschny, Jun 29 2012
A211183
Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 1, 3, 3, 6, 6, 10, 10, 15, ...) DELTA (1, 0, 2, 0, 3, 0, 4, 0, 5, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 4, 1, 0, 7, 19, 11, 1, 0, 38, 123, 107, 26, 1, 0, 295, 1076, 1195, 474, 57, 1, 0, 3098, 12350, 16198, 8668, 1836, 120, 1, 0, 42271, 180729, 268015, 176091, 52831, 6549, 247, 1, 0, 726734, 3290353, 5369639, 4105015, 1564817, 287473, 22145
Offset: 0
Triangle begins :
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 7, 19, 11, 1;
0, 38, 123, 107, 26, 1;
0, 295, 1076, 1195, 474, 57, 1;
0, 3098, 12350, 16198, 8668, 1836, 120, 1;
0, 42271, 180729, 268015, 176091, 52831, 6549, 247, 1;
0, 726734, 3290353, 5369639, 4105015, 1564817, 287473, 22145, 502, 1; ...
-
T(n,k)=polcoeff(polcoeff(sum(m=0, n, m!*x^m*prod(k=1, m, (y + (k-1)/2)/(1+(k*y+k*(k-1)/2)*x+x*O(x^n)))), n,x),k,y)
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Feb 03 2013
A085707
Triangular array A065547 unsigned and transposed.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 17, 17, 0, 1, 10, 55, 155, 155, 0, 1, 15, 135, 736, 2073, 2073, 0, 1, 21, 280, 2492, 13573, 38227, 38227, 0, 1, 28, 518, 6818, 60605, 330058, 929569, 929569, 0, 1, 36, 882, 16086, 211419, 1879038, 10233219, 28820619
Offset: 0
1;
1, 0;
1, 1, 0;
1, 3, 3, 0;
1, 6, 17, 17, 0;
1, 10, 55, 155, 155, 0;
...
- Louis Comtet, Analyse Combinatoire, PUF, 1970, Tome 2, pp. 98-99.
Row sums Sum_{k>=0} T(n, k) =
A006846(n), values of Hammersley's polynomial p_n(1).
Sum_{k>=0} 2^k*T(n, k) =
A005647(n), Salie numbers.
Sum_{k>=0} 3^k*T(n, k) =
A094408(n).
Sum_{k>=0} 4^k*T(n, k) =
A000364(n), Euler numbers.
-
h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First // Abs // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
Comments