A219240
Coefficient array for the cube of Chebyshev's S polynomials.
Original entry on oeis.org
1, 0, 0, 0, 1, -1, 0, 3, 0, -3, 0, 1, 0, 0, 0, -8, 0, 12, 0, -6, 0, 1, 1, 0, -9, 0, 30, 0, -45, 0, 30, 0, -9, 0, 1, 0, 0, 0, 27, 0, -108, 0, 171, 0, -136, 0, 57, 0, -12, 0, 1, -1, 0, 18, 0, -123, 0, 399, 0, -651, 0, 588, 0, -308, 0, 93, 0, -15, 0, 1, 0, 0, 0, -64, 0, 480, 0, -1488, 0, 2488, 0, -2472, 0, 1524, 0, -588, 0, 138, 0, -18, 0, 1
Offset: 0
The array a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=0: 1
n=1: 0 0 0 1
n=2: -1 0 3 0 -3 0 1
n=3: 0 0 0 -8 0 12 0 -6 0 1
n=4: 1 0 -9 0 30 0 -45 0 30 0 -9 0 1
n=5: 0 0 0 27 0 -108 0 171 0 -136 0 57 0 -12 0 1
...
Row n=6: [-1, 0, 18, 0, -123, 0, 399, 0, -651, 0, 588, 0, -308, 0, 93, 0, -15, 0, 1],
Row n=7: [0, 0, 0, -64, 0, 480, 0, -1488, 0, 2488, 0, -2472, 0, 1524, 0, -588, 0, 138, 0, -18, 0, 1],
Row n=8: [1, 0, -30, 0, 345, 0, -1921, 0, 5598, 0, -9540, 0, 10212, 0, -7137, 0, 3303, 0, -1003, 0, 192, 0, -21, 0, 1].
n=2: S(2,x)^3 = (x^2 - 1)^3 = -1 + 3*x^2 - 3*x^4 + x^6.
n=3: S(3,x)^3 = (x^3 - 2*x)^3 = -8*x^3 + 12*x^5 - 6*x^7 + x^9.
A220670
Coefficient triangle for powers of x^2 of polynomials appearing in a generalized Melham conjecture on alternating sums of third powers of Chebyshev's S polynomials with odd indices. Coefficients in powers of x^2 of 2 + (-1)^n*S(2*n,x).
Original entry on oeis.org
3, 3, -1, 3, -3, 1, 3, -6, 5, -1, 3, -10, 15, -7, 1, 3, -15, 35, -28, 9, -1, 3, -21, 70, -84, 45, -11, 1, 3, -28, 126, -210, 165, -66, 13, -1, 3, -36, 210, -462, 495, -286, 91, -15, 1, 3, -45, 330, -924, 1287, -1001, 455, -120, 17, -1, 3, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1
Offset: 0
The triangle a(n,p) begins:
n\p 0 1 2 3 4 5 6 7 8 9 10 ...
0: 3
1: 3 -1
2: 3 -3 1
3: 3 -6 5 -1
4: 3 -10 15 -7 1
5: 3 -15 35 -28 9 -1
6: 3 -21 70 -84 45 -11 1
7: 3 -28 126 -210 165 -66 13 -1
8: 3 -36 210 -462 495 -286 91 -15 1
9: 3 -45 330 -924 1287 -1001 455 -120 17 -1
10: 3 -55 495 -1716 3003 -3003 1820 -680 153 -19 1
...
Row n=2: H(1,2,x^2) := (-3+x^2)*(0 - (S(1,x)/x)^3 + (S(3,x)/x)^3)/((1 - S(4,x))/x^2)^2 = 3 - 3*x^2 + x^4 =
2 + S(4,x).
Row n=3: H(1,3,x^2) := (-3+x^2)*(0 - (S(1,x)/x)^3 + (S(3,x)/x)^3 - (S(5,x)/x)^3 )/((1 + S(6,x))/x^2)^2 = 3-6*x^2+5*x^4-x^6 = 2 - S(6,x).
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
- T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No.1, (2012) 95-103.
A220671
Coefficient array for powers of x^2 of polynomials appearing in a generalized Melham conjecture on alternating sums of fifth powers of Chebyshev S polynomials with odd indices.
Original entry on oeis.org
-14, 15, -20, 8, -1, 55, -170, 221, -153, 59, -12, 1, 115, -670, 1773, -2696, 2549, -1538, 589, -138, 18, -1, 195, -1850, 8215, -21530, 36330, -41110, 31865, -17080, 6314, -1579, 255, -24, 1, 295, -4150, 27735, -110795, 289540, -518290, 654595, -595805, 396316, -193906, 69641, -18129, 3327, -408, 30, -1
Offset: 1
The array a(n,p) begins:
n\p 0 1 2 3 4 5 6 7 8 9 10 11 12
0: -14
1: 15 -20 8 -1
2: 55 -170 221 -153 59 -12 1
3: 115 -670 1773 -2696 2549 -1538 589 -138 18 -1
4: 195 -1850 8215 -21530 36330 -41110 31865 -17080 6314 -1579 255 -24 1
...
Row n=5: [295, -4150, 27735, -110795, 289540, -518290, 654595, -595805, 396316, -193906, 69641, -18129, 3327, -408, 30, -1],
Row n=6: [415, -8120, 76118, -429531, 1599441, -4125672, 7621983, -10350335, 10539787, -8164410, 4853792, -2222153, 781514, -209172, 41823, -6047, 597, -36, 1].
A231123
Array T(n,k) read by antidiagonals: T(n,k) = sum(i=0...n, (-1)^(n+i) * C(n+i,2i) * n/(2i+1) * k^(2i+1) ), n>0, k>1.
Original entry on oeis.org
2, 2, 18, 2, 123, 52, 2, 843, 724, 110, 2, 5778, 10084, 2525, 198, 2, 39603, 140452, 57965, 6726, 322, 2, 271443, 1956244, 1330670, 228486, 15127, 488, 2, 1860498, 27246964, 30547445, 7761798, 710647, 30248, 702, 2, 12752043, 379501252, 701260565, 263672646
Offset: 2
Array starts
2, 18, 52, 110, 198, 322, 488, 702, 970,...
2, 123, 724, 2525, 6726, 15127, 30248, 55449, 95050,...
2, 843, 10084, 57965, 228486, 710647, 1874888, 4379769, 9313930,...
2, 5778, 140452, 1330670, 7761798, 33385282, 116212808, 345946302,...
2, 39603, 1956244, 30547445, 263672646, 1568397607, 7203319208,...
- A. Schinzel, On reducible trinomials III. In: Selecta, Vol. I, European Mathematical Society 2007, pp. 625-626.
-
T(i,k)=n=2*i+1;sum(m=0,(n-1)/2,(-1)^(m+(n-1)/2)*n*binomial((n+2*m+1)/2-1,2*m)/(2*m+1)*k^(2*m+1))
A284966
Triangle read by rows: coefficients of the scaled Lucas polynomials x^(n/2)*L(n, sqrt(x)) for n >= 0, sorted by descending powers of x.
Original entry on oeis.org
2, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 2, 4, 1, 0, 0, 0, 5, 5, 1, 0, 0, 0, 2, 9, 6, 1, 0, 0, 0, 0, 7, 14, 7, 1, 0, 0, 0, 0, 2, 16, 20, 8, 1, 0, 0, 0, 0, 0, 9, 30, 27, 9, 1, 0, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 0, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, 1, 0, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12, 1
Offset: 0
First few polynomials are
2;
x;
2*x + x^2;
3*x^2 + x^3;
2*x^2 + 4*x^3 + x^4;
5*x^3 + 5*x^4 + x^5;
...
giving
2;
0, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 2, 4, 1;
0, 0, 0, 5, 5, 1;
...
- C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
- W. O. J. Moser and M. Abramson, Enumeration of combinations with restricted differences and cospan, J. Combin. Theory, 7 (1969), 162-170.
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Edge Cover Polynomial
- Eric Weisstein's World of Mathematics, Lucas Polynomial
- Eric Weisstein's World of Mathematics, Vertex Cover Polynomial
Cf.
A034807 (Lucas polynomials x^(n/2)*L(n, 1/sqrt(x))).
-
L := proc (n, K, x) -1 + sum((-1)^j*n*binomial(n - j*K, j)*x^j*(x+1)^(n - j*(K+1))/(n - j*K), j = 0 .. floor(n/(K + 1))) end proc; for i to 30 do expand(L(i, 2, x)) end do; # gives the g.f. of row n for 1 <= n <= 30. - Petros Hadjicostas, Jan 27 2019
-
CoefficientList[Table[x^(n/2) LucasL[n, Sqrt[x]], {n, 12}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
CoefficientList[Table[2 x^n (-1/x)^(n/2) ChebyshevT[n, 1/(2 Sqrt[-1/x])], {n, 12}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
CoefficientList[Table[FunctionExpand[2 (-(1/x))^(n/2) x^n Cos[n ArcSec[2 Sqrt[-(1/x)]]]], {n, 15}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
CoefficientList[LinearRecurrence[{x, x}, {x, x (2 + x)}, 15], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
A111126
Triangle read by rows: T(k,s) = binomial(k+s,2s+1)*(2k-1)*(2k+1)/(2s+3), k >= 1, 0 <= s <= k-1.
Original entry on oeis.org
1, 10, 3, 35, 28, 5, 84, 126, 54, 7, 165, 396, 297, 88, 9, 286, 1001, 1144, 572, 130, 11, 455, 2184, 3510, 2600, 975, 180, 13, 680, 4284, 9180, 9350, 5100, 1530, 238, 15, 969, 7752, 21318, 28424, 20995, 9044, 2261, 304, 17, 1330, 13167, 45144, 76076, 72618
Offset: 1
Triangle starts:
1;
10,3;
35,28,5;
84,126,54,7;
165,396,297,88,9;
-
T:=(k,s)->binomial(k+s,2*s+1)*(2*k-1)*(2*k+1)/(2*s+3): for k from 1 to 10 do seq(T(k,s),s=0..k-1) od; # yields sequence in triangular form; Emeric Deutsch, Feb 01 2006
A113214
Riordan array (1+2x,x(1+x)).
Original entry on oeis.org
1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 0, 5, 5, 1, 0, 0, 2, 9, 6, 1, 0, 0, 0, 7, 14, 7, 1, 0, 0, 0, 2, 16, 20, 8, 1, 0, 0, 0, 0, 9, 30, 27, 9, 1, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, 1, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12, 1, 0, 0, 0, 0, 0, 0, 13, 91, 182, 156, 65, 13, 1
Offset: 0
Triangle begins
1;
2, 1;
0, 3, 1;
0, 2, 4, 1;
0, 0, 5, 5, 1;
0, 0, 2, 9, 6, 1;
0, 0, 0, 7, 14, 7, 1;
0, 0, 0, 2, 16, 20, 8, 1;
Row 4: (1 + x*c(-x))^5 = 1 + 5*x + 5*x^2 + O(x^5). - _Peter Bala_, Sep 10 2021
A217479
Array of coefficients of polynomials providing the third term of the numerator of the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;2,x^2), m >= 2.
Original entry on oeis.org
-8, 6, -27, 65, -56, 15, -61, 260, -469, 415, -176, 28, -114, 736, -2104, 3214, -2838, 1456, -400, 45, -190, 1714, -6988, 15699, -21461, 18760, -10614, 3768, -760, 66, -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91
Offset: 2
The array a(m,k) starts:
m\k 0 1 2 3 4 5 6 7 8 9 ...
2: -8 6
3: -27 65 -56 15
4: -61 260 -469 415 -176 28
5: -114 736 -2104 3214 -2838 1456 -400 45
6: -190 1714 -6988 15699 -21461 18760 -10614 3768 -760 66
...
Row m=7: -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91.
Row m=8: -427, 6536, -46102, 183762, -461654, 780716, -926345, 790773, -491397, 221760, -71139, 15405, -2016, 120.
Row 9: -596, 11346, -100077, 502036, -1600280, 3470116, -5352805, 6051236, -5110145, 3256825, -1568416, 564980, -148176, 26770, -2976, 153.
m=2: P(2;2,x^2) = tau(0,x)*tau(1,x) + tau(0,x)*tau(2,x) + tau(1,x)*tau(2,x) - (tau(0,x)+tau(1,x)+tau(2,x))*x^4 + (5 -10*x^2 + 10*x^4 - 5*x^6 + x^8) = -8 + 6*x^2 = 2*(-4 + 3*x^2).
The numerator of the o.g.f. for S(n,x)^5 is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + (-x*z)^2*2*(-4 + 3*x^2), where the last bracket in the second term comes from row m=2 of A217478. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). See the example of A217478.
A219235
Coefficient array for the third power of the monic integer Chebyshev polynomials 2*T(2*n+1,x/2)/x as a function of x^2.
Original entry on oeis.org
1, -27, 27, -9, 1, 125, -375, 450, -275, 90, -15, 1, -343, 2058, -5145, 7007, -5733, 2940, -952, 189, -21, 1, 729, -7290, 30861, -72927, 107406, -104652, 69768, -32319, 10395, -2277, 324, -27, 1, -1331, 19965, -127776, 461857, -1058145, 1641486, -1797818, 1427679, -834900, 361790, -115830, 27027, -4466, 495, -33, 1
Offset: 0
The array a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: -27 27 -9 1
2: 125 -375 450 -275 90 -15 1
3: -343 2058 -5145 7007 -5733 2940 -952 189 -21 1
...
Row n=4: [729, -7290, 30861, -72927, 107406, -104652, 69768, -32319, 10395, -2277, 324, -27, 1].
Row n=5: [-1331, 19965, -127776, 461857, -1058145, 1641486, -1797818, 1427679, -834900, 361790, -115830, 27027, -4466, 495, -33, 1].
Row n=1 polynomial p(1,x) := -27 + 27*x - 9*x^2 + 1*x^3 with p(1,x^2) = tau(1,x)^3 = (-3 + x^2)^3 = -27+27*x^2-9*x^4+x^6.
Cf.
A111125 (tau(n,x) coefficients if signed).
A236376
Riordan array ((1-x+x^2)/(1-x)^2, x/(1-x)^2).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 4, 14, 16, 7, 1, 5, 25, 41, 29, 9, 1, 6, 41, 91, 92, 46, 11, 1, 7, 63, 182, 246, 175, 67, 13, 1, 8, 92, 336, 582, 550, 298, 92, 15, 1, 9, 129, 582, 1254, 1507, 1079, 469, 121, 17, 1, 10, 175, 957, 2508, 3718, 3367, 1925, 696, 154
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
3, 7, 5, 1;
4, 14, 16, 7, 1;
5, 25, 41, 29, 9, 1;
6, 41, 91, 92, 46, 11, 1;
7, 63, 182, 246, 175, 67, 13, 1;
-
# The function RiordanSquare is defined in A321620.
RiordanSquare(1+x/(1-x)^2, 8); # Peter Luschny, Mar 06 2022
-
CoefficientList[#, y] & /@
CoefficientList[
Series[(1 - x + x^2)/(1 - 2*x - x*y + x^2), {x, 0, 12}], x] (* Wouter Meeussen, Jan 25 2014 *)
Comments