cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A008416 Coordination sequence for 8-dimensional cubic lattice.

Original entry on oeis.org

1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048, 1229360, 2187520, 3732560, 6140800, 9785072, 15158272, 22900496, 33830016, 48978352, 69629696, 97364944, 134110592, 182192752, 244396544, 324031120, 425000576
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 8-dimensional cyclotomic lattice Z[zeta_16].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 + x)/(1 - x))^8, {x, 0, 26}], x] (* Michael De Vlieger, Dec 18 2017 *)

Formula

G.f.: ((1+x)/(1-x))^8.
a(n) = A008415(n) + A008415(n-1) + a(n-1). - Bruce J. Nicholson, Dec 17 2017
n*a(n) = 16*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

A035599 Number of points of L1 norm 5 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 20, 102, 360, 1002, 2364, 4942, 9424, 16722, 28004, 44726, 68664, 101946, 147084, 207006, 285088, 385186, 511668, 669446, 864008, 1101450, 1388508, 1732590, 2141808, 2625010, 3191812, 3852630, 4618712, 5502170, 6516012
Offset: 0

Views

Author

Keywords

Crossrefs

Column 5 of A035607, A266213. Row 5 of A113413, A119800, A122542.

Programs

  • Magma
    [(4*n^4+20*n^2+6)*n/15: n in [0..30]]; // Vincenzo Librandi, Apr 23 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^4/(1-x)^6,{x,0,33}],x] (* Vincenzo Librandi, Apr 23 2012 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,2,20,102,360,1002},40] (* Harvey P. Dale, Dec 30 2023 *)
  • PARI
    a(n)=(4*n^5+20*n^3+6*n)/15 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (4*n^4+20*n^2+6)*n/15. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^4/(1-x)^6. - Colin Barker, Mar 19 2012
a(n) = 2*A069038(n). - R. J. Mathar, Dec 10 2013
From Shel Kaphan, Mar 01 2023: (Start)
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=5.
a(n) = A001847(n) - A001846(n).
a(n) = A008413(n)*n/5. (End)

A080246 Signed version of A035607.

Original entry on oeis.org

1, -2, 1, 2, -4, 1, -2, 8, -6, 1, 2, -12, 18, -8, 1, -2, 16, -38, 32, -10, 1, 2, -20, 66, -88, 50, -12, 1, -2, 24, -102, 192, -170, 72, -14, 1, 2, -28, 146, -360, 450, -292, 98, -16, 1, -2, 32, -198, 608, -1002, 912, -462, 128, -18, 1, 2, -36, 258, -952, 1970, -2364
Offset: 0

Views

Author

Paul Barry, Feb 15 2003

Keywords

Comments

Written as lower triangular matrix this has inverse A080247. Row sums are (1,-1,-1,1,1,-1,-1,1,1,...) Diagonal sums are signed tribonacci numbers A078042
Riordan array((1-x)/(1+x), x*(1-x)/(1+x)). - Philippe Deléham, Jan 05 2014

Examples

			Rows are {1}, {-2,1}, {2,-4,1}, {-2,8,-6,1}, ...
		

Crossrefs

Formula

Columns are generated by (1-x)^k/(1+x)^k
T(n,k)=(-1)^(n+k)*A113413(n,k). - Philippe Deléham, Jan 05 2014
T(n,k)=T(n-1,k-1)-T(n-1,k)-T(n-2,k-1), T(0,0)=1, T(1,0)=-2, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 05 2014

A270715 a(n) = ((n+2)/2)*Sum_{k=0..n/2}(Sum_{i=0..n-2*k} binomial(k+1,n-2*k-i)*binomial(k+i,k))/(k+1).

Original entry on oeis.org

1, 3, 5, 10, 19, 35, 65, 120, 221, 407, 749, 1378, 2535, 4663, 8577, 15776, 29017, 53371, 98165, 180554, 332091, 610811, 1123457, 2066360, 3800629, 6990447, 12857437, 23648514, 43496399, 80002351, 147147265
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 22 2016

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,0,-1},{1,3,5,10},40] (* Harvey P. Dale, May 23 2017 *)
  • Maxima
    a(n):=(n+2)/2*(sum(sum(binomial(k+1,n-2*k-i)*binomial(k+i,k),i,0,n-2*k)/(k+1),k,0,n/2));
    
  • PARI
    x='x+O('x^200); Vec((-x^2+x+1)/((1-x)*(-x^3-x^2-x+1))) \\ Altug Alkan, Mar 22 2016

Formula

G.f.: (-x^2+x+1)/((1-x)*(-x^3-x^2-x+1)).

A270724 a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))/(k+1)*C(k)), where C(k) is Catalan numbers.

Original entry on oeis.org

1, 3, 5, 10, 20, 42, 93, 213, 504, 1221, 3014, 7553, 19158, 49087, 126845, 330174, 864884, 2278138, 6030218, 16031950, 42790362, 114616360, 307996874, 830084080, 2243193198, 6076953906, 16500486744, 44897830740, 122406923038, 334333367602
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 22 2016

Keywords

Crossrefs

Programs

  • Maple
    A270724 := proc(n)
        a := 0 ;
        for k from 0 to n/2 do
            for i from 0 to n-2*k do
                a := a+binomial(k+1,n-2*k-i)*binomial(k+i,k)/(k+1)*A000108(k) ;
            end do:
        end do:
        %*(n+2)/2 ;
    end proc: # R. J. Mathar, Oct 07 2016
  • Mathematica
    Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k]) Binomial[2 k, k]/(k + 1)^2, {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 29}] (* or *)
    CoefficientList[Series[((-x^2 + x + 1) (1 - Sqrt[1 - (4 x^2 (x + 1))/(1 - x)]))/(2 x^2*(1 - x^2)), {x, 0, 29}], x] (* Michael De Vlieger, Mar 25 2016 *)
  • Maxima
    a(n):=((n+2)/2)*(sum(sum(binomial(k+1,n-2*k-i)*binomial(k+i,k),i,0,n-2*k)/(k+1)^2*binomial(2*k,k),k,0,n/2));
    
  • PARI
    x='x+O('x^200); Vec(((-x^2+x+1)*(1-sqrt(1-(4*x^2*(x+1))/(1-x))))/(2*x^2*(1-x^2))) \\ Altug Alkan, Mar 22 2016

Formula

G.f.: ((-x^2+x+1)*(1-sqrt(1-(4*x^2*(x+1))/(1-x))))/(2*x^2*(1-x^2)).
a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*binomial(2*k,k)/(k+1)^2).
Conjecture: (n+2)*a(n) +(-n-2)*a(n-1) +(-7*n+6)*a(n-2) +10*a(n-3) +(13*n-32)*a(n-4) +(5*n-32)*a(n-5) +(-11*n+52)*a(n-6) +4*(-n+6)*a(n-7) +4*(n-7)*a(n-8)=0. - R. J. Mathar, Oct 07 2016

A270737 a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*F(k+1)/(k+1)), where F(k) is Fibonacci numbers.

Original entry on oeis.org

1, 3, 5, 10, 20, 42, 91, 195, 415, 880, 1864, 3952, 8385, 17795, 37765, 80138, 170044, 360810, 765595, 1624515, 3447071, 7314368, 15520400, 32932800, 69880225, 148279107, 314634021, 667623210, 1416632420, 3005958090, 6378354619
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 22 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k])/(k + 1) Fibonacci[k + 1], {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 30}] (* or *)
    CoefficientList[Series[(-x^2 + x + 1)/(-x^6 - 2 x^5 - 2 x + 1), {x, 0, 30}], x] (* Michael De Vlieger, Mar 25 2016 *)
    LinearRecurrence[{2, 0, 0, 0, 2, 1}, {1, 3, 5, 10, 20, 42}, 100] (* G. C. Greubel, Mar 25 2016 *)
  • Maxima
    a(n):=(n+2)/2*(sum(sum(binomial(k+1,n-2*k-i)*binomial(k+i,k),i,0,n-2*k)*fib(k+1)/(k+1),k,0,n/2));
    
  • PARI
    my(x='x+O('x^40)); Vec((-x^2+x+1)/(-x^6-2*x^5-2*x+1)) \\ Altug Alkan, Mar 22 2016

Formula

G.f.: (-x^2+x+1)/(-x^6-2*x^5-2*x+1).
a(n) = 2*a(n-1) + 2*a(n-5) + a(n-6). - G. C. Greubel, Mar 25 2016
Previous Showing 11-16 of 16 results.