cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A336271 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * binomial(2*k,k) * a(n-k).

Original entry on oeis.org

1, 2, 10, 92, 1354, 29252, 873964, 34555880, 1748176714, 110183215988, 8467704986260, 779536758060920, 84699429189141100, 10725613123706081720, 1565870044943751242440, 261092436660169105108592, 49312362996510562406915914, 10473104312824253527997052500
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2020

Keywords

Crossrefs

Column k=2 of A340986.

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^2.
a(n) ~ (n!)^2 * n / (BesselJ(1, 2*sqrt(r))^2 * r^(n+1)), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 15 2020

A181168 G.f.: 1 = 1/(1+x) + Sum_{n>=1} a(n)*C(2n,n-1)*x^n* Sum_{k>=0} C(2n+k,k)^2*(-x)^k.

Original entry on oeis.org

1, 2, 11, 114, 1892, 45800, 1520535, 66256610, 3666164264, 251038266192, 20835983387100, 2060833345614120, 239466622145739120, 32297762247056413536, 5003953730422122499023, 882564184814509784837250
Offset: 1

Views

Author

Paul D. Hanna, Oct 08 2010

Keywords

Comments

Compare g.f. to a g.f of the Catalan numbers:
. 1 = Sum_{n>=0} A000108(n)*x^n * Sum_{k>=0} C(2n+k,k)*(-x)^k.

Examples

			Illustrate the g.f. by the series:
1 = (1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 +...)
+ 1*1*1*x*(1 - 3^2*x + 6^2*x^2 - 10^2*x^3 + 15^2*x^4 +...)
+ 2*2*2*x^2*(1 - 5^2*x + 15^2*x^2 - 35^2*x^3 + 70^2*x^4 +...)
+ 3*5*11*x^3*(1 - 7^2*x + 28^2*x^2 - 84^2*x^3 + 210^2*x^4 +...)
+ 4*14*114*x^4*(1 - 9^2*x + 45^2*x^2 - 165^2*x^3 + 495^2*x^4 +...)
+ 5*42*1892*x^5*(1 - 11^2*x + 66^2*x^2 - 286^2*x^3 + 1001^2*x^4 +...)
+ 6*132*45800*x^6*(1 - 13^2*x + 91^2*x^2 - 455^2*x^3 + 1820^2*x^4 +...)
+ 7*429*1520535*x^7*(1 - 15^2*x + 120^2*x^2 - 680^2*x^3 + 3060^2*x^4+..) +...
which indicates a connection of this sequence to the Catalan numbers.
		

Crossrefs

Programs

  • Mathematica
    nmax=20; Table[(CoefficientList[Series[BesselJ[1,2*x]/x/BesselJ[0,2*x],{x,0,2*nmax}],x]*Range[0,2*nmax]!)[[2*n+1]] / Binomial[2n,n-1],{n,1,nmax}] (* Vaclav Kotesovec, Jul 31 2014 *)
  • PARI
    {a(n)=if(n<1, 0, ((-1)^(n-1)-polcoeff(sum(m=0, n-1, a(m)*binomial(2*m, m-1)*x^m*sum(k=0, n-m, binomial(2*m+k, k)^2*(-x)^k)+x*O(x^n)), n))/binomial(2*n, n-1))}

Formula

a(n) = A181167(n)/C(2n,n-1) for n>=1.
a(n) ~ (n!)^2 * (2/BesselJZero[0,1])^(2*n+2), where BesselJZero[0,1] = A115368 = 2.40482555769... . - Vaclav Kotesovec, Jul 31 2014

A188489 Exponential transform of (A000275 number of pairs of permutations with rise/rise forbidden).

Original entry on oeis.org

1, 1, 2, 8, 61, 797, 16021, 457285, 17529203, 867230231, 53745914922, 4076301322848, 371301496685164, 39992538951200636, 5027440719872343598, 729432303460596468394, 120977789712983152108734, 22743262423568258626295550
Offset: 0

Views

Author

Paul D. Hanna, Apr 01 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 61*x^4 + 797*x^5 + 16021*x^6 +...
log(A(x)) = x + 3*x^2/2 + 19*x^3/3 + 211*x^4/4 + 3651*x^5/5 + 90921*x^6/6 +...+ A000275(n)*x^n/n +...
		

Crossrefs

Cf. A000275 (log), A115368.

Programs

  • PARI
    {A000275(n)=n!^2*4^n*polcoeff(1/besselj(0, x+x*O(x^(2*n))), 2*n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A000275(m)*x^m/m)+x*O(x^n)),n)}

Formula

G.f.: A(x) = exp( Sum_{n>=1} A000275(n)*x^n/n ) where A000275 is the number of pairs of permutations with rise/rise forbidden.
a(n) ~ c * n! * (n-1)! / r^n, where r = 1/4*BesselJZero[0,1]^2 = 1.44579649073669613 and c = 1/(sqrt(r) * BesselJ(1, 2*sqrt(r))) = 1.6019746969280466266484... - Vaclav Kotesovec, Mar 02 2014, updated Apr 01 2018

A244354 Decimal expansion of 'mu', a Sobolev isoperimetric constant related to the "membrane inequality", arising from the study of a vibrating membrane that is stretched across the unit disk and fastened at its boundary.

Original entry on oeis.org

1, 7, 2, 9, 1, 5, 0, 6, 9, 0, 3, 0, 6, 4, 4, 9, 2, 6, 9, 1, 8, 8, 6, 6, 8, 3, 4, 4, 3, 0, 1, 0, 3, 7, 1, 4, 9, 0, 2, 0, 0, 6, 7, 1, 1, 5, 9, 2, 8, 3, 9, 2, 2, 5, 6, 4, 6, 0, 6, 8, 0, 8, 4, 8, 2, 9, 4, 8, 1, 0, 6, 3, 1, 6, 3, 1, 5, 6, 3, 9, 9, 8, 8, 7, 3, 2, 4, 4, 0, 0, 9, 0, 1, 8, 3, 5, 8, 9, 5, 1, 8, 2, 2, 5
Offset: 0

Views

Author

Jean-François Alcover, Jun 26 2014

Keywords

Examples

			0.17291506903064492691886683443...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.

Crossrefs

Cf. A115368.

Programs

  • Mathematica
    theta = BesselJZero[0, 1]; mu = 1/theta^2; RealDigits[mu, 10, 104] // First
  • PARI
    1/besseljzero(0)^2 \\ Charles R Greathouse IV, Aug 23 2022

Formula

mu = 1/theta^2, where theta is A115368, the first positive zero of the Bessel function J0(x).

A336638 Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^3.

Original entry on oeis.org

1, 3, 21, 255, 4725, 123903, 4368729, 199467243, 11455187445, 808475761695, 68805857523321, 6950458374996843, 822292004658568761, 112639503374757412875, 17688916392275574761805, 3157133540377493872350855, 635546443798928578953138165
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Column k=3 of A340986.

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^3, {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * A002893(k) * a(n-k).
a(n) ~ n!^2 * n^2 / (2 * r^(n + 3/2) * BesselJ(1, 2*sqrt(r))^3), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025

A336639 Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / BesselJ(0,2*sqrt(x))^4.

Original entry on oeis.org

1, 4, 36, 544, 12196, 377904, 15438816, 803602944, 51908768676, 4074743122384, 382079412133936, 42184889139337344, 5417567866536188896, 800808722921088352384, 135006904500993157933056, 25751088570167886107910144, 5517695042810314282550432676
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Comments

In general, if k>=1 and Sum_{n>=0} a(n) * x^n / n!^2 = 1 / BesselJ(0, 2*sqrt(x))^k, then a(n) ~ n!^2 * n^(k-1) / ((k-1)! * r^(n + k/2) * BesselJ(1, 2*sqrt(r))^k), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4. - Vaclav Kotesovec, Jul 11 2025

Crossrefs

Column k=4 of A340986.

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[1/BesselJ[0, 2 Sqrt[x]]^4, {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k]^2 Binomial[2 k, k] HypergeometricPFQ[{1/2, -k, -k, -k}, {1, 1, 1/2 - k}, 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k)^2 * A002895(k) * a(n-k).
a(n) ~ n!^2 * n^3 / (6 * r^(n+2) * BesselJ(1, 2*sqrt(r))^4), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025

A244355 Decimal expansion of 'lambda', a Sobolev isoperimetric constant related to the "membrane inequality", arising from the study of a vibrating membrane that is stretched across the unit disk and fastened at its boundary.

Original entry on oeis.org

5, 7, 8, 3, 1, 8, 5, 9, 6, 2, 9, 4, 6, 7, 8, 4, 5, 2, 1, 1, 7, 5, 9, 9, 5, 7, 5, 8, 4, 5, 5, 8, 0, 7, 0, 3, 5, 0, 7, 1, 4, 4, 1, 8, 0, 6, 4, 2, 3, 6, 8, 5, 5, 8, 7, 0, 8, 7, 1, 2, 3, 7, 1, 4, 4, 5, 6, 0, 6, 4, 3, 0, 4, 8, 8, 5, 5, 4, 4, 3, 7, 3, 8, 8, 6, 3, 4, 0, 3, 5, 9, 5, 4, 4, 4, 9, 0, 2, 0, 4, 3, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Jun 26 2014

Keywords

Examples

			5.7831859629467845211759957584558...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.

Crossrefs

Programs

  • Mathematica
    theta = BesselJZero[0, 1]; lambda = theta^2; RealDigits[lambda, 10, 103] // First
  • PARI
    solve(x=2, 3, besselj(0, x))^2 \\ Michel Marcus, Nov 02 2018
    
  • PARI
    besseljzero(0)^2 \\ Charles R Greathouse IV, Aug 09 2022

Formula

lambda = theta^2 where theta is A115368, the first positive zero of the Bessel function J0(x).
lambda = 1/mu = 1/A244354.
lambda is also the smallest eigenvalue of the ODE r^2*g''(r)+r*g'(r)+lambda*r^2*g(r)=0, g(0)=1, g(1)=0.

A321215 Decimal expansion of C[11] coefficient (negated) in 1/N expansion of lowest Laplacian Dirichlet eigenvalue of the Pi-area, N-sided regular polygon.

Original entry on oeis.org

6, 0, 1, 6, 3, 3, 5, 7, 1, 7, 6, 9, 0, 3, 4, 6, 8, 2, 9, 2, 2, 1, 8, 5, 3, 3, 1, 5, 0, 7, 5, 4, 5, 4, 8, 1, 1, 5, 3, 0, 9, 7, 2, 1, 8, 0, 6, 1, 7, 3, 1, 0, 1, 7, 7, 9, 9, 3, 3, 1, 4, 4, 7, 6, 1, 0, 4, 5, 4, 6, 1, 0, 0, 8, 9, 6, 7, 6, 1, 2, 6, 1, 7, 3, 9, 5, 2, 4, 3, 2, 9, 2, 1, 2, 9, 2, 5, 4, 0, 9, 0, 8, 4, 7, 4, 5
Offset: 4

Views

Author

Robert Stephen Jones, Oct 31 2018

Keywords

Comments

This is the 11th coefficient C[11] = -6016.337... in the 1/N expansion of the lowest Laplacian Dirichlet eigenvalue of the N-sided, Pi-area regular polygon.
In context, the eigenvalue expression for the N-sided, Pi-area regular polygon is L = L0*(1 + C[3]/N^3 + C[5]/N^5 + C[6]/N^6 + C[7]/N^7 + C[8]/N^8 + ... + C[11]/N^11 + ...) where L0 = [A115368]^2 = [A244355] is the eigenvalue in the Pi-area circle.
C[11] was computed by first computing several hundred 200-digit eigenvalues in the range from N = 1000 to 3000, and then using linear regression to determine this expansion coefficient. All digits reported are correct. This is the first coefficient that appears to break the regular pattern involving roots of Bessel functions and Riemann zeta functions, for example, C[3] = 4*zeta(3) and C[5] = (12-2*L0)*zeta(5), where zeta(n) is the Riemann zeta function. C[11] is negative.

Examples

			6016.335717690346829221853315075454811530972180617310177993314476104546100896...
		

Crossrefs

Cf. A321216 = C[12], the next coefficient in the 1/N expansion.

A321216 Decimal expansion of C[12] coefficient in 1/N expansion of the lowest Laplacian Dirichlet eigenvalue of the Pi-area, N-sided regular polygon.

Original entry on oeis.org

2, 5, 2, 0, 0, 9, 7, 3, 7, 9, 2, 9, 3, 2, 4, 6, 4, 6, 7, 6, 0, 6, 5, 2, 1, 2, 2, 3, 9, 5, 3, 8, 5, 4, 7, 7, 0, 2, 8, 7, 8, 0, 6, 5, 3, 2, 2, 5, 5, 6, 6, 1, 4, 6, 4, 9, 7, 9, 0, 1, 5, 3, 9, 4, 4, 7, 7, 3, 6, 0, 5, 4, 2, 4, 0, 2, 9, 8, 2, 8, 3, 6, 7, 4, 5, 6, 6, 2, 0, 7, 3, 7, 1, 3, 4, 1, 5, 7, 8, 5
Offset: 5

Views

Author

Robert Stephen Jones, Oct 31 2018

Keywords

Comments

This is the 12th coefficient C[12] in the 1/N expansion of the lowest Laplacian Dirichlet eigenvalue of Pi-area, N-sided regular polygon. It was determined using experimental mathematics by computing the coefficient to 125 digits of precision. It can be computed using the expression in the Formula section. It is expressed in terms of L0 = [A115368]^2 = [A244355] = 5.78318... (eigenvalue of unit-radius circle) and Riemann zeta functions. Although this is derived using experimental mathematics, the decimal expansion reported is equal to that expression. In context, the eigenvalue expression for the N-sided, Pi-area regular polygon is
L = L0*(1 + C[3]/N^3 + C[5]/N^5 + C[6]/N^6 + C[7]/N^7 + C[8]/N^8 + ... + C[12]/N^12 + ...). The expression for this coefficient follows a pattern similar to lower-order coefficients (except C[11] [A321215]), e.g., C[3]=4*zeta(3) and C[5]=(12-2*L0)*zeta(5).

Examples

			25200.9737929324646760652122395385477028780653225566146497901539447736054240...
		

Crossrefs

Cf. A321215 is decimal expansion of C[11], the next lower order coefficient.

Programs

  • PARI
    {default(realprecision,100);L0=solve(x=2,3,besselj(0,x))^2;(32/3+272*L0/3-16*L0^2)*zeta(3)^4+(1360/3-488*L0/3+456*L0^2+107*L0^3/3+5*L0^4/8)*zeta(3)*zeta(9)+(432-216*L0-207*L0^2+47*L0^3/2+11*L0^4/8)*zeta(5)*zeta(7)}

A242402 Decimal expansion of the smallest positive root of the equation J_0(t)*I_1(t)+I_0(t)*J_1(t) = 0 (with I_0, I_1, J_0 and J_1, Bessel functions).

Original entry on oeis.org

3, 1, 9, 6, 2, 2, 0, 6, 1, 6, 5, 8, 2, 5, 4, 1, 0, 9, 3, 9, 8, 0, 5, 2, 7, 4, 0, 3, 4, 0, 3, 7, 2, 0, 3, 4, 1, 5, 9, 9, 0, 8, 1, 1, 1, 1, 6, 2, 0, 2, 2, 2, 0, 4, 6, 8, 4, 2, 2, 7, 0, 3, 6, 4, 2, 3, 2, 3, 3, 3, 1, 1, 7, 2, 9, 7, 6, 1, 5, 2, 4, 5, 1, 1, 2, 6, 2, 7, 0, 0, 2, 1, 7, 5, 2, 2, 0, 9, 6, 1
Offset: 1

Views

Author

Jean-François Alcover, May 13 2014

Keywords

Comments

"This [constant] is associated with the study of a vibrating, homogeneous plate clamped at the boundary [of the unit disk]." - Quoted from Steven R. Finch.

Examples

			3.196220616582541093980527403403720341599...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 222.

Crossrefs

Cf. A115368.

Programs

  • Mathematica
    FindRoot[BesselJ[0, t]*BesselI[1, t] + BesselI[0, t]*BesselJ[1, t] == 0, {t, 3}, WorkingPrecision -> 100][[1, 2]] // RealDigits[#, 10, 100]& // First
  • PARI
    solve(t=3,4, besselj(0,t)*besseli(1,t)+besseli(0,t)*besselj(1,t)) \\ Charles R Greathouse IV, Oct 23 2023
Previous Showing 11-20 of 24 results. Next