cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 160 results. Next

A376305 Run-compression of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 20 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
The run-compression is A376305 (this sequence).
		

Crossrefs

This is the run-compression of first differences of A005117.
For prime instead of squarefree numbers we have A037201, halved A373947.
Before compressing we had A076259, ones A375927.
For run-lengths instead of compression we have A376306.
For run-sums instead of compression we have A376307.
For prime-powers instead of squarefree numbers we have A376308.
For positions of first appearances instead of compression we have A376311.
The version for nonsquarefree numbers is A376312.
Positions of 1's are A376342.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    First/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A334441 Maximum part of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order; a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 2, 3, 2, 1, 5, 3, 4, 2, 3, 2, 1, 6, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 7, 4, 5, 6, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 8, 4, 5, 6, 7, 3, 4, 4, 5, 6, 2, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 9, 5, 6, 7, 8, 3, 4, 4, 5, 5, 6, 7, 3, 3, 4, 4, 5, 6, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, May 06 2020

Keywords

Comments

First differs from A049085 at a(8) = 2, A049085(8) = 3.
The parts of a partition are read in the usual (weakly decreasing) order. The version for reversed (weakly increasing) partitions is A049085.

Examples

			Triangle begins:
  0
  1
  2 1
  3 2 1
  4 2 3 2 1
  5 3 4 2 3 2 1
  6 3 4 5 2 3 4 2 3 2 1
  7 4 5 6 3 3 4 5 2 3 4 2 3 2 1
  8 4 5 6 7 3 4 4 5 6 2 3 3 4 5 2 3 4 2 3 2 1
		

Crossrefs

Row lengths are A000041.
The length of the same partition is A036043.
Ignoring partition length (sum/lex) gives A036043 also.
The version for reversed partitions is A049085.
a(n) is the maximum element in row n of A334301.
The number of distinct parts in the same partition is A334440.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Partitions counted by sum and number of distinct parts are A116608.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Table[If[n==0,{0},Max/@Sort[IntegerPartitions[n]]],{n,0,10}]

A351204 Number of integer partitions of n such that every permutation has all distinct runs.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 11, 14, 18, 20, 25, 28, 34, 41, 47, 53, 64, 72, 84, 98, 113, 128, 148, 169, 194, 223, 255, 289, 333, 377, 428, 488, 554, 629, 715, 807, 913, 1033, 1166, 1313, 1483, 1667, 1875, 2111, 2369, 2655, 2977, 3332, 3729, 4170, 4657, 5195, 5797, 6459
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

Partitions enumerated by this sequence include those in which all parts are either the same or distinct as well as partitions with an even number of parts all of which except one are the same. - Andrew Howroyd, Feb 15 2022

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (3111)    (4111)     (521)
                                     (111111)  (211111)   (2222)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The version for run-lengths instead of runs is A000005.
The version for normal multisets is 2^(n-1) - A283353(n-3).
The complement is counted by A351203, ranked by A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!UnsameQ@@Split[#]&]=={}&]],{n,0,15}]
  • PARI
    \\ here Q(n) is A000009.
    Q(n)={polcoef(prod(k=1, n, 1 + x^k + O(x*x^n)), n)}
    a(n)={Q(n) + if(n, numdiv(n) - 1) + sum(k=1, (n-1)\3, sum(j=3, (n-1)\k, j%2==1 && n-k*j<>k))} \\ Andrew Howroyd, Feb 15 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 15 2022

A360244 Number of integer partitions of n where the parts do not have the same median as the distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 11, 17, 23, 37, 42, 68, 87, 110, 153, 209, 261, 352, 444, 573, 750, 949, 1187, 1508, 1909, 2367, 2938, 3662, 4507, 5576, 6826, 8359, 10203, 12372, 15011, 18230, 21996, 26518, 31779, 38219, 45682, 54660, 65112, 77500, 92089, 109285
Offset: 0

Views

Author

Gus Wiseman, Feb 05 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(4) = 1 through a(9) = 17 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (4211)     (3222)
                          (3211)    (5111)     (3321)
                          (4111)    (22211)    (4311)
                          (22111)   (32111)    (5211)
                          (31111)   (41111)    (6111)
                          (211111)  (221111)   (22221)
                                    (311111)   (33111)
                                    (2111111)  (42111)
                                               (51111)
                                               (321111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
For example, the partition y = (33111) has median 1, and the distinct parts {1,3} have median 2, so y is counted under a(9).
		

Crossrefs

For mean instead of median: A360242, ranks A360246, complement A360243.
These partitions are ranked by A360248.
The complement is A360245, ranked by A360249.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A240219 counts partitions with mean equal to median, ranks A359889.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median.
A359894 counts partitions with mean different from median, ranks A359890.
A360071 counts partitions by number of parts and number of distinct parts.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[#]!=Median[Union[#]]&]],{n,0,30}]

A325244 Number of integer partitions of n with one fewer distinct multiplicities than distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 7, 12, 16, 21, 33, 38, 50, 75, 87, 111, 150, 185, 244, 307, 373, 461, 585, 702, 856, 1043, 1255, 1498, 1822, 2143, 2565, 3064, 3607, 4251, 5064, 5920, 6953, 8174, 9503, 11064, 12927, 14921, 17320, 19986, 23067, 26485, 30499, 34894
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

For example, (32211) has two distinct multiplicities (1, 2) and three distinct parts (1, 2, 3) so is counted under a(9).
The Heinz numbers of these partitions are given by A325259.

Examples

			The a(3) = 1 through a(10) = 16 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)      (64)
              (41)  (51)    (52)    (62)     (63)      (73)
                    (2211)  (61)    (71)     (72)      (82)
                            (3211)  (3221)   (81)      (91)
                                    (3311)   (3321)    (3322)
                                    (4211)   (4221)    (4411)
                                    (32111)  (4311)    (5221)
                                             (5211)    (5311)
                                             (32211)   (6211)
                                             (42111)   (32221)
                                             (222111)  (33211)
                                             (321111)  (42211)
                                                       (43111)
                                                       (52111)
                                                       (421111)
                                                       (3211111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[#]]==Length[Union[Length/@Split[#]]]+1&]],{n,0,30}]

A360245 Number of integer partitions of n where the parts have the same median as the distinct parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 11, 13, 19, 19, 35, 33, 48, 66, 78, 88, 124, 138, 183, 219, 252, 306, 388, 450, 527, 643, 780, 903, 1097, 1266, 1523, 1784, 2107, 2511, 2966, 3407, 4019, 4667, 5559, 6364, 7492, 8601, 10063, 11634, 13469, 15469, 17985, 20558, 23812
Offset: 0

Views

Author

Gus Wiseman, Feb 05 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (11111)  (51)      (61)       (62)
                                     (222)     (421)      (71)
                                     (321)     (1111111)  (431)
                                     (2211)               (521)
                                     (111111)             (2222)
                                                          (3221)
                                                          (3311)
                                                          (11111111)
For example, the partition y = (6,4,4,4,1,1) has median 4, and the distinct parts {1,4,6} also have median 4, so y is counted under a(20).
		

Crossrefs

For mean instead of median: A360242, ranks A360247, complement A360243.
These partitions have ranks A360249.
The complement is A360244, ranks A360248.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A240219 counts partitions with mean equal to median, ranks A359889.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median.
A359894 counts partitions with mean different from median, ranks A359890.
A360071 counts partitions by number of parts and number of distinct parts.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[#]==Median[Union[#]]&]],{n,0,30}]

A360254 Number of integer partitions of n with more adjacent equal parts than distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 4, 7, 10, 12, 18, 28, 36, 52, 68, 92, 119, 161, 204, 269, 355, 452, 571, 738, 921, 1167, 1457, 1829, 2270, 2834, 3483, 4314, 5300, 6502, 7932, 9665, 11735, 14263, 17227, 20807, 25042, 30137, 36099, 43264, 51646, 61608, 73291, 87146, 103296
Offset: 0

Views

Author

Gus Wiseman, Feb 20 2023

Keywords

Comments

None of these partitions is strict.
Also the number of integer partitions of n which, after appending 0, have first differences of median 0.

Examples

			The a(3) = 1 through a(9) = 10 partitions:
  (111)  (1111)  (11111)  (222)     (22111)    (2222)      (333)
                          (21111)   (31111)    (22211)     (22221)
                          (111111)  (211111)   (41111)     (33111)
                                    (1111111)  (221111)    (51111)
                                               (311111)    (222111)
                                               (2111111)   (411111)
                                               (11111111)  (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
For example, the partition y = (4,4,3,1,1,1,1) has 0-appended differences (0,1,2,0,0,0,0), with median 0, so y is counted under a(15).
		

Crossrefs

The non-prepended version is A237363.
These partitions have ranks A360558.
For any integer median (not just 0) we have A360688.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[#]>2*Length[Union[#]]&]],{n,0,30}]

A360241 Number of integer partitions of n whose distinct parts have integer mean.

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 6, 13, 13, 22, 19, 43, 34, 56, 66, 97, 92, 156, 143, 233, 256, 322, 341, 555, 542, 710, 831, 1098, 1131, 1644, 1660, 2275, 2484, 3035, 3492, 4731, 4848, 6063, 6893, 8943, 9378, 12222, 13025, 16520, 18748, 22048, 24405, 31446, 33698, 41558
Offset: 0

Views

Author

Gus Wiseman, Feb 02 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (331)      (44)
                    (31)    (11111)  (42)      (511)      (53)
                    (1111)           (51)      (3211)     (62)
                                     (222)     (31111)    (71)
                                     (321)     (1111111)  (422)
                                     (3111)               (2222)
                                     (111111)             (3221)
                                                          (3311)
                                                          (5111)
                                                          (32111)
                                                          (311111)
                                                          (11111111)
For example, the partition (32111) has distinct parts {1,2,3} with mean 2, so is counted under a(8).
		

Crossrefs

For parts instead of distinct parts we have A067538, ranked by A316413.
The strict case is A102627.
These partitions are ranked by A326621.
For multiplicities instead of distinct parts: A360069, ranked by A067340.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A051293 counts subsets with integer mean, median A000975.
A058398 counts partitions by mean, also A327482.
A116608 counts partitions by number of distinct parts.
A326619/A326620 gives mean of distinct prime indices.
A326622 counts factorizations with integer mean, strict A328966.
A360071 counts partitions by number of parts and number of distinct parts.
The following count partitions:
- A360242 mean(parts) != mean(distinct parts), ranked by A360246.
- A360243 mean(parts) = mean(distinct parts), ranked by A360247.
- A360250 mean(parts) > mean(distinct parts), ranked by A360252.
- A360251 mean(parts) < mean(distinct parts), ranked by A360253.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[Union[#]]]&]],{n,0,30}]

A376306 Run-lengths of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
  (1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with lengths A376306 (this sequence).
		

Crossrefs

Run-lengths of first differences of A005117.
Before taking run-lengths we had A076259, ones A375927.
For prime instead of squarefree numbers we have A333254.
For compression instead of run-lengths we have A376305.
For run-sums instead of run-lengths we have A376307.
For prime-powers instead of squarefree numbers we have A376309.
For positions of first appearances instead of run-lengths we have A376311.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Length/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A376312 Run-compression of first differences (A078147) of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 4, 1, 3, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2, 1, 3, 1, 4, 1, 3, 4, 2, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 3, 2, 4, 1, 3, 4, 2, 3, 1, 3, 1, 4, 1, 3, 2, 1, 3, 4, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
and run-compression (A376312):
  4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, ...
		

Crossrefs

For nonprime instead of squarefree numbers we have A037201, halved A373947.
Before compressing we had A078147.
For run-sums instead of compression we have A376264.
For squarefree instead of nonsquarefree we have A376305, ones A376342.
For prime-powers instead of nonsquarefree numbers we have A376308.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    First/@Split[Differences[Select[Range[100], !SquareFreeQ[#]&]]]
Previous Showing 41-50 of 160 results. Next