A111907 Numbers k such that the same number of primes, among primes <= the largest prime dividing k, divide k as do not.
1, 3, 9, 14, 21, 27, 28, 35, 56, 63, 78, 81, 98, 112, 130, 147, 156, 175, 182, 189, 195, 196, 224, 234, 243, 245, 260, 273, 286, 312, 364, 392, 429, 441, 448, 455, 468, 520, 567, 570, 572, 585, 624, 650, 686, 702, 715, 728, 729, 784, 798, 819, 875, 896, 936
Offset: 1
Keywords
Examples
28 is included because 7 is the largest prime dividing 28. And of the primes <= 7 (2,3,5,7), 2 and 7 (2 primes) divide 28 and 3 and 5 (also 2 primes) do not divide 28. From _Gus Wiseman_, Mar 19 2023: (Start) The terms together with their prime indices begin: 1: {} 3: {2} 9: {2,2} 14: {1,4} 21: {2,4} 27: {2,2,2} 28: {1,1,4} 35: {3,4} 56: {1,1,1,4} 63: {2,2,4} 78: {1,2,6} 81: {2,2,2,2} 98: {1,4,4} 112: {1,1,1,1,4} 130: {1,3,6} 147: {2,4,4} 156: {1,1,2,6} For example, 156 is included because it has prime indices {1,1,2,6}, with distinct parts {1,2,6} and distinct non-parts {3,4,5}, both of length 3. Alternatively, 156 has greatest prime index 6 and omega 3, and 6 = 2*3. (End)
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Range[100],2*PrimeNu[#]==PrimePi[FactorInteger[#][[-1,1]]]&] (* Gus Wiseman, Mar 19 2023 *)
-
PARI
{m=950;v=vector(m);for(n=1,m,f=factor(n)[,1]~;c=0;pc=0;forprime(p=2,vecmax(f), j=1;s=length(f);while(j<=s&&p!=f[j],j++);if(j<=s,c++);pc++);v[n]=sign(pc-2*c)); for(n=1,m,if(v[n]==0,print1(n,",")))} \\ Klaus Brockhaus, Aug 21 2005
-
Python
from itertools import count, islice from sympy import sieve, factorint def a_gen(): yield 1 for k in count(3): f = [sieve.search(i)[0] for i in factorint(k)] if 2*len(f) == f[-1]: yield k A111907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 20 2024
Extensions
More terms from Klaus Brockhaus, Aug 21 2005
Comments