cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A143472 Expansion of 1/(1 - x^3 - x^5 - x^7 + x^10), inverse of a Salem polynomial.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 17, 20, 26, 31, 38, 48, 58, 72, 88, 108, 134, 164, 202, 249, 306, 376, 463, 570, 701, 863, 1061, 1306, 1607, 1976, 2433, 2993, 3682, 4531, 5574, 6859, 8439, 10383, 12776, 15719, 19340, 23796
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 24 2008

Keywords

Comments

The ratio productive positive root is 1.2303914344072246.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^3-x^5-x^7+x^10))); // G. C. Greubel, Nov 03 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x^3 - x^5 - x^7 + x^10), {x, 0, 50}], x]
  • Maxima
    makelist(ratcoef(taylor(1/(1 - x^3 - x^5 - x^7 + x^10), x, 0, n), x, n), n, 0, 50); /* Franck Maminirina Ramaharo, Nov 02 2018 */
    
  • PARI
    x='x+O('x^50); Vec(1/(1-x^3-x^5-x^7+x^10)) \\ G. C. Greubel, Nov 03 2018
    

Formula

G.f.: 1/(1 - x^3 - x^5 - x^7 + x^10). - Colin Barker, Oct 23 2013
a(n) = a(n-3) + a(n-5) + a(n-7) - a(n-10). - Franck Maminirina Ramaharo, Oct 30 2018

Extensions

More terms from Colin Barker, Oct 23 2013
New name after Colin Barker's formula by Franck Maminirina Ramaharo, Nov 03 2018

A143619 Expansion of 1/(1 - x^2 - x^7 - x^12 + x^14) (a Salem polynomial).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 8, 9, 12, 13, 17, 19, 24, 28, 34, 41, 49, 59, 71, 86, 103, 124, 149, 179, 215, 259, 311, 375, 450, 542, 651, 784, 942, 1133, 1363, 1638, 1971, 2369, 2851, 3427, 4123, 4957, 5962, 7170, 8622, 10370, 12470, 14998, 18035, 21691, 26085, 31371
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 26 2008

Keywords

Comments

Low growth rate of 1.20262... .The absolute values of the roots of the polynomial are 0.8315201041..., 1.2026167436..., and 1.0 (with multiplicity 12). The polynomial is self-reciprocal. - Joerg Arndt, Nov 03 2012

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x^2-x^7-x^12+x^14))); // G. C. Greubel, Nov 03 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x^2 - x^7 - x^12 + x^14), {x, 0, 50}], x]
    LinearRecurrence[{0,1,0,0,0,0,1,0,0,0,0,1,0,-1},{1,0,1,0,1,0,1,1,1,2,1,3,2,4},70] (* Harvey P. Dale, Aug 08 2022 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-x^2-x^7-x^12+x^14)) \\ G. C. Greubel, Nov 03 2018
    

Formula

G.f.: 1/(1 - x^2 - x^7 - x^12 + x^14). - Colin Barker, Nov 03 2012
a(n) = a(n-2) + a(n-7) + a(n-12) - a(n-14). - Franck Maminirina Ramaharo, Nov 02 2018

Extensions

New name from Colin Barker and Joerg Arndt, Nov 03 2012

A143644 Expansion of 1/(1 - x^3 - x^4 + x^7 - x^10 - x^11 + x^14) (a Salem polynomial).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 9, 10, 12, 15, 18, 21, 26, 31, 37, 44, 54, 64, 76, 92, 111, 132, 159, 191, 229, 275, 330, 396, 475, 570, 684, 821, 985, 1182, 1418, 1703, 2043, 2451, 2942, 3531, 4236, 5084, 6101, 7321, 8785, 10543, 12652, 15182, 18219, 21864, 26237, 31485
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 26 2008

Keywords

Comments

Limiting ratio is 1.2000265239873915..., the largest real root of 1 - x^3 - x^4 + x^7 - x^10 - x^11 + x^14: 1.200026523987391518902962100414 is a candidate for the smallest degree-14 Salem number. The absolute values of the roots of the polynomial are 0.8333149143..., 1.200026523..., and 1.0 (with multiplicity 12). The polynomial is self-reciprocal. - Joerg Arndt, Nov 03 2012

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x^3-x^4+x^7-x^10-x^11+x^14) )); // G. C. Greubel, Dec 06 2019
    
  • Maple
    seq(coeff(series(1/(1-x^3-x^4+x^7-x^10-x^11+x^14), x, n+1), x, n), n = 0..50); # G. C. Greubel, Dec 06 2019
  • Mathematica
    CoefficientList[Series[1/(1-x^3-x^4+x^7-x^10-x^11+x^14), {x, 0, 50}], x]
  • PARI
    my(x='x+O('x^50)); Vec(1/(1-x^3-x^4+x^7-x^10-x^11+x^14)) \\ G. C. Greubel, Dec 06 2019
    
  • Sage
    def A143644_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x^3-x^4+x^7-x^10-x^11+x^14) ).list()
    A143644_list(50) # G. C. Greubel, Dec 06 2019

Formula

G.f.: 1/(1 - x^3 - x^4 + x^7 - x^10 - x^11 + x^14). - Colin Barker, Nov 03 2012
a(n) = a(n-3) + a(n-4) - a(n-7) + a(n-10) + a(n-11) - a(n-14). - Franck Maminirina Ramaharo, Oct 30 2018

Extensions

New name from Colin Barker and Joerg Arndt, Nov 03 2012

A147663 Expansion of 1/(1 - x - x^2 + x^3 - x^7 + x^9 - x^11).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 50, 66, 88, 116, 154, 203, 269, 356, 472, 625, 828, 1097, 1453, 1925, 2550, 3379, 4476, 5930, 7855, 10406, 13784, 18260, 24189, 32044, 42449, 56233, 74493, 98682, 130726, 173175, 229409, 303902, 402585
Offset: 0

Views

Author

Roger L. Bagula, Nov 09 2008

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x-x^2+x^3-x^7+x^9-x^11))); // G. C. Greubel, Nov 03 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 + x^3 - x^7 + x^9 - x^11), {x, 0, 50}], x] (* Franck Maminirina Ramaharo, Oct 31 2018 *)
    LinearRecurrence[{1,1,-1,0,0,0,1,0,-1,0,1},{1,1,2,2,3,3,4,5,7,9,12},50] (* Harvey P. Dale, May 31 2020 *)
  • PARI
    Vec(-1/((x^3+x^2-1)*(x^8-x^7+x^5-x^4+x^3-x+1))  + O(x^50)) \\ Colin Barker, Sep 18 2013
    

Formula

G.f.: -1/((x^3 + x^2 - 1)*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)). - Colin Barker, Sep 18 2013
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-7) - a(n-9) + a(n-10), n >= 10. - Franck Maminirina Ramaharo, Oct 31 2018

Extensions

Heavily edited (because the Name, Comments, Formula and Mathematica code did not correspond to the terms of the sequence) by Colin Barker, Sep 18 2013

A173908 Expansion of 1/(1 + x - x^3 - x^4 - x^8 - x^12 - x^13 - x^17 - x^21 - x^22 - x^26 - x^30 - x^31 + x^33 + x^34).

Original entry on oeis.org

1, -1, 1, 0, 0, 0, 1, -1, 2, -2, 3, -2, 3, -2, 4, -3, 6, -5, 9, -7, 12, -9, 16, -12, 22, -17, 31, -24, 43, -33, 59, -45, 81, -63, 113, -88, 156, -121, 215, -168, 298, -233, 412, -323, 570, -448, 788, -621, 1090, -861, 1507, -1193, 2084, -1654, 2882, -2293
Offset: 0

Views

Author

Roger L. Bagula, Nov 26 2010

Keywords

Comments

This polynomial is what I call a bi-Salem polynomial because it has two roots bigger than 1 (one positive and one negative).

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1+x-x^3 -x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30-x^31+x^33+x^34))); // G. C. Greubel, Nov 03 2018
    
  • Maple
    seq(coeff(series(1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30-x^31+ x^33+x^34), x, n+1), x, n), n = 0..60); # G. C. Greubel, Dec 15 2019
  • Mathematica
    CoefficientList[Series[1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30 - x^31+x^33+x^34), {x, 0, 60}], x]
  • PARI
    x='x+O('x^60); Vec(1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26 - x^30-x^31+x^33+x^34)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    def A173908_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30 - x^31+x^33+x^34) ).list()
    A173908_list(30) # G. C. Greubel, Dec 15 2019

Formula

a(n) = a(n-1) + (n-3) + a(n-4) + a(n-8) + a(n-12) + a(n-13) + a(n-17) + a(n-21) + a(n-22) + a(n-26) + a(n-30) + a(n-31) - a(n-33) - a(n-34). - Franck Maminirina Ramaharo, Nov 02 2018

A173924 Expansion of 1/(1 - x^5 - x^6 - x^7 - x^8 + x^13).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 3, 3, 3, 3, 4, 6, 8, 10, 11, 12, 16, 20, 26, 32, 38, 46, 56, 70, 88, 108, 132, 161, 198, 244, 302, 372, 457, 561, 689, 849, 1046, 1287, 1584, 1947, 2395, 2947, 3627, 4464, 5492, 6756, 8312, 10227, 12584, 15484, 19052, 23440
Offset: 0

Views

Author

Roger L. Bagula, Nov 26 2010

Keywords

Comments

Limiting ratio is: 1.2303914344072246.
Related to the 7th Salem on the Mossinghoff's list by factorization:
(1 + x)*(1 - x + x^2)*(1 - x^3 - x^5 - x^7 + x^10)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(1/(1 -x^5-x^6-x^7-x^8+x^13))); // G. C. Greubel, Nov 03 2018
    
  • Maple
    seq(coeff(series(1/(1-x^5-x^6-x^7-x^8+x^13), x, n+1), x, n), n = 0..50); # G. C. Greubel, Dec 15 2019
  • Mathematica
    CoefficientList[Series[1/(1-x^5-x^6-x^7-x^8+x^13), {x, 0, 50}], x]
  • PARI
    my(x='x+O('x^50)); Vec(1/(1-x^5-x^6-x^7-x^8+x^13)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    def A173924_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x^5-x^6-x^7-x^8+x^13) ).list()
    A173924_list(50) # G. C. Greubel, Dec 15 2019

Formula

a(n) = a(n-5) + a(n-6) + a(n-7) + a(n-8) - a(n-13). - Franck Maminirina Ramaharo, Oct 30 2018

Extensions

More terms from Franck Maminirina Ramaharo, Nov 03 2018

A173925 Expansion of 1/(1 - x - x^8 - x^15 + x^16).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 19, 24, 30, 37, 45, 56, 69, 85, 105, 130, 161, 199, 246, 304, 376, 465, 575, 711, 879, 1086, 1343, 1660, 2052, 2537, 3137, 3879, 4796, 5929, 7330, 9062, 11203, 13850, 17123, 21170, 26173, 32359, 40006
Offset: 0

Views

Author

Roger L. Bagula, Nov 26 2010

Keywords

Comments

Limiting ratio is 1.2303914344072246.
The polynomial is the 10th Salem on Mossinghoff's list.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!(1/(1-x-x^8-x^15+x^16))); // G. C. Greubel, Nov 03 2018
    
  • Maple
    seq(coeff(series(1/(1-x-x^8-x^15+x^16), x, n+1), x, n), n = 0..60); # G. C. Greubel, Dec 15 2019
  • Mathematica
    CoefficientList[Series[1/(1-x-x^8-x^15+x^16), {x, 0, 60}] ,x] (* Harvey P. Dale, Apr 02 2012 *)
  • PARI
    my(x='x+O('x^60)); Vec(1/(1-x-x^8-x^15+x^16)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    def A173925_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x-x^8-x^15+x^16) ).list()
    A173925_list(60) # G. C. Greubel, Dec 15 2019

Formula

a(n) = a(n-1) + a(n-8) + a(n-15) - a(n-16). - Harvey P. Dale, Apr 02 2012

A174522 Expansion of 1/(1 - x - x^4 + x^6).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 7, 7, 8, 11, 14, 15, 16, 20, 26, 30, 32, 37, 47, 57, 63, 70, 85, 105, 121, 134, 156, 191, 227, 256, 291, 348, 419, 484, 548, 640, 768, 904, 1033, 1189, 1409, 1673, 1938, 2223, 2599, 3083, 3612, 4162, 4823, 5683, 6696, 7775, 8986
Offset: 0

Views

Author

Roger L. Bagula, Nov 28 2010

Keywords

Comments

Low limiting ratio in 100th iteration near 1.16663.
The polynomial is interesting for the puzzling low ratio and the Salem like root structure with two complex roots outside the unit circle.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 - x - x^4 + x^6))); // G. C. Greubel, Nov 03 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^4 + x^6), {x, 0, 60}], x]
  • PARI
    x='x+O('x^50); Vec(1/(1 - x - x^4 + x^6)) \\ G. C. Greubel, Nov 03 2018
    

Formula

a(n) = a(n-1) + a(n-4) + a(n-6). - Franck Maminirina Ramaharo, Oct 31 2018

A175740 Expansion of 1/(1 - x - x^10 - x^19 + x^20).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 21, 26, 32, 39, 47, 56, 66, 79, 94, 112, 134, 161, 194, 234, 282, 339, 407, 488, 585, 701, 840, 1007, 1208, 1450, 1741, 2090, 2510, 3013, 3616, 4339, 5206, 6246, 7494, 8992, 10790, 12948
Offset: 0

Views

Author

Roger L. Bagula, Dec 04 2010

Keywords

Comments

Limiting ratio is 1.2000265239873915.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!(1/(1 - x - x^10 - x^19 + x^20))); // G. C. Greubel, Nov 03 2018
    
  • Maple
    seq(coeff(series(1/(1 -x -x^10 -x^19 +x^20), x, n+1), x, n), n = 0..60); # G. C. Greubel, Dec 05 2019
  • Mathematica
    CoefficientList[Series[1/(1 -x -x^10 -x^19 +x^20), {x, 0, 60}], x]
  • PARI
    my(x='x+O('x^60)); Vec(1/(1 -x -x^10 -x^19 +x^20)) \\ G. C. Greubel, Nov 03 2018
    
  • Sage
    def A175740_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1 -x -x^10 -x^19 +x^20) ).list()
    A175740_list(60) # G. C. Greubel, Dec 05 2019

Formula

G.f.: 1/((1 - x + x^2)*(1 - x^2 + x^4)*(1 - x^3 - x^4 + x^7 - x^10 - x^11 + x^14)).
a(n) = a(n-1) + a(n-10) + a(n-19) + a(n-20). - Franck Maminirina Ramaharo, Oct 31 2018

A175772 Expansion of 1/(1 - x - x^9 - x^17 + x^18).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 20, 25, 31, 38, 46, 55, 67, 81, 98, 119, 145, 177, 216, 263, 320, 389, 473, 575, 699, 850, 1034, 1258, 1530, 1862, 2265, 2755, 3351, 4076, 4958, 6031, 7336, 8923, 10854, 13203, 16060, 19535, 23762
Offset: 0

Views

Author

Roger L. Bagula, Dec 04 2010

Keywords

Comments

The ratio a(n+1)/a(n) is 1.216391661138265... as n->infinity.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^9-x^17+x^18))); // G. C. Greubel, Nov 03 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^9 - x^17 + x^18), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11} ,60] (* Harvey P. Dale, Jul 13 2014 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-x-x^9-x^17+x^18)) \\ G. C. Greubel, Nov 03 2018
    

Formula

G.f.: 1/((1 - x^2 + x^4)*(1 - x^4 - x^5 - x^6 + x^10)*(1 - x + x^2 - x^3 + x^4)).
a(n) = a(n-1) + a(n-9) + a(n-17) - a(n-18). - Harvey P. Dale, Jul 13 2014
Previous Showing 11-20 of 32 results. Next