cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A120075 Row sums of triangle A120073 (denominator triangle for H atom spectrum).

Original entry on oeis.org

4, 45, 176, 750, 1101, 4459, 6080, 13284, 16350, 46585, 33954, 109850, 92463, 142705, 198400, 432344, 255096, 761349, 500355, 824866, 925529, 2007555, 1044616, 2612500, 2158130, 3301641, 2848741
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Crossrefs

Programs

  • Magma
    A120073:= func< n,k | Denominator(1/k^2 - 1/n^2) >;
    [(&+[A120073(n,k): k in [1..n-1]]): n in [2..50]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    A120075[n_]:= Sum[Denominator[1/k^2 -1/n^2], {k,n-1}];
    Table[A120075[n], {n,2,50}] (* G. C. Greubel, Apr 24 2023 *)
  • SageMath
    def A120073(n,k): return denominator(1/k^2 - 1/n^2)
    [sum(A120073(n,k) for k in range(1,n)) for n in range(2,51)] # G. C. Greubel, Apr 24 2023

Formula

a(n) = Sum_{k=1..n-1} A120073(n,k), for n >= 2.

A126252 Wavenumbers of red, turquoise, blue, indigo and violet in the spectrum of hydrogen, as first measured by Robert Bunsen and Gustav Kirchhoff in 1859.

Original entry on oeis.org

1523310, 2056410, 2303240, 2437290, 2518130
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2006

Keywords

Comments

How Johann Jakob Ballmer found his formula in 1885 by analyzing and manipulating the ratios of these data:
r(1) = a(1)/a(1) = 1,
a(2)/a(1) = 1.349961..., rounded: r(2) = 135/100 = 27/20,
a(3)/a(1) = 1.511996..., rounded: r(3) = 1512/1000 = 189/125,
a(4)/a(1) = 1.599996..., rounded: r(4) = 16/10 = 8/5,
a(5)/a(1) = 1.6530647..., r(5) = 81/49 = 2-1/(3-1/(9-1/2)), derived from a(5)/a(1) = 2-1/(3-1/(9-3095/6216)) when replacing 3095/6216 by 1/2;
the multiplication of these fractions by 5/36 is the key trick to get more handy figures to see eventually increasing squares in the denominators by an appropriate expansion:
b(1) = r(1)*5/36 = 5 / 36,
b(2) = r(2)*5/36 = 3 / 16,
b(3) = r(3)*5/36 = 21 / 100,
b(4) = r(4)*5/36 = 2 / 9,
b(5) = r(5)*5/36 = 45 / 196;
... b(1) .|.... b(2) ..|.... b(3) ..|.... b(4) ..|.... b(5),
... 5/36 .|.... 3/16 ..|... 21/100 .|.... 2/9 ...|... 45/196,
... 5/36 .|... 12/64 ..|... 21/100 .|... 32/144 .|... 45/196,
(9-4)/9*4 |(16-4)/16*4 |(25-4)/25*4 |(36-4)/36*4 |(49-4)/49*4,
this last step was the crowning achievement: the discovery of the pattern (x-y)/x*y,
b(n) = ((n+2)^2 - 4)/(4*(n+2)^2) = 1/4 - 1/(n+2)^2;
1<=n<=5: b(n) = A061037(n+2)/A061038(n+2) = A120072(n+2,2)/A120073(n+2,2).

References

  • R. Taschner, Der Zahlen gigantischer Schatten, Vieweg 2005, 137-143.

A174233 Triangle T(n,k) read by rows: the numerator of 1/n^2 - 1/(k-n)^2, 0 <= k < 2n.

Original entry on oeis.org

0, -1, 0, -3, -1, -3, 0, -5, -8, -1, -8, -5, 0, -7, -3, -15, -1, -15, -3, -7, 0, -9, -16, -21, -24, -1, -24, -21, -16, -9, 0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11, 0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13, 0, -15, -7, -39, -3, -55, -15, -63
Offset: 1

Views

Author

Paul Curtz, Mar 13 2010

Keywords

Comments

A value of -1 is substituted at the poles where k=n.
The triangle is created by selecting the first 2, 4, 6 etc elements of the array shown in A172370, equivalent to attaching the initial elements of the rows of A172157 to the rows of A174190.
If the first column of zeros is removed from the triangle, each row is left-right symmetric with respect to the center value.

Examples

			The triangle starts
  0,  -1;
  0,  -3,  -1,  -3;
  0,  -5,  -8,  -1,  -8,  -5;
  0,  -7,  -3, -15,  -1, -15,  -3,  -7;
  0,  -9, -16, -21, -24,  -1, -24, -21, -16,  -9;
  0, -11,  -5,  -1,  -2, -35,  -1, -35,  -2,  -1,  -5, -11;
  0, -13, -24, -33, -40, -45, -48,  -1, -48, -45, -40, -33, -24, -13;
		

Crossrefs

Programs

  • Maple
    A173233 := proc(n,k) if k = n then -1 ; else 1/n^2-1/(k-n)^2 ; numer(%) ; end if; end proc: # R. J. Mathar, Jan 06 2011
  • Mathematica
    T[n_, n_] := -1; T[n_, k_] := 1/n^2 - 1/(k - n)^2; Table[Numerator[T[n, k]], {n, 1, 20}, {k, 0, 2 n - 1}]//Flatten (* G. C. Greubel, Sep 19 2018 *)

A165507 Triangle T(n,m) read by rows: numerator of 1/(1+n-m)^2 - 1/m^2.

Original entry on oeis.org

0, -3, 3, -8, 0, 8, -15, -5, 5, 15, -24, -3, 0, 3, 24, -35, -21, -7, 7, 21, 35, -48, -2, -16, 0, 16, 2, 48, -63, -45, -1, -9, 9, 1, 45, 63, -80, -15, -40, -5, 0, 5, 40, 15, 80, -99, -77, -55, -33, -11, 11, 33, 55, 77, 99, -120, -6, -8, -3, -24, 0, 24, 3, 8, 6, 120
Offset: 1

Views

Author

Paul Curtz, Sep 21 2009

Keywords

Comments

The triangle is obtained from the infinite array shown in the comment in A172370 by starting in column 1 and reading diagonally upwards along increasing columns or starting in column -1 and reading diagonally upwards along decreasing columns.
Equivalence of these two interpretations follows from the mirror symmetry m <-> -m along column m=0 in that array.
T(n,m) is antisymmetric (changes sign) with respect to a central zero if the row index n is odd, and with respect to the separator in the middle of the row if the row index n is even: T(n,m) = -T(n,n+1-m).
An appropriate triangle of denominators is in A143183.

Examples

			The triangle starts in row n=1 with columns 1<=m<=n as
0;
-3,3;
-8,0,8;
-15,-5,5,15;
-24,-3,0,3,24;
-35,-21,-7,7,21,35;
-48,-2,-16,0,16,2,48;
		

Crossrefs

Programs

  • Magma
    [[Numerator(1/(n-k+1)^2 - 1/k^2): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 21 2018
  • Maple
    A165507 := proc(n,m) 1/(1+n-m)^2-1/m^2 ; numer(%) ; end proc:
  • Mathematica
    Table[Numerator[1/(n-k+1)^2 - 1/k^2], {n,1,15}, {k,1,n}]//Flatten (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    for(n=1, 15, for(k=1, n, print1(numerator(1/(n-k+1)^2 - 1/k^2), ", "))) \\ G. C. Greubel, Oct 21 2018
    

Formula

T(n,m) = A173651(1+n,m), m>=1.

A120078 Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum.

Original entry on oeis.org

1, 4, -3, 36, -27, -5, 144, -108, -20, -7, 3600, -2700, -500, -175, -81, 3600, -2700, -500, -175, -81, -44, 176400, -132300, -24500, -8575, -3969, -2156, -1300, 705600, -529200, -98000, -34300, -15876, -8624, -5200, -3375, 6350400, -4762800, -882000, -308700, -142884, -77616, -46800, -30375, -20825
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The row polynomials P(n,x) = Sum_{k=1..n-1} a(n,k)*x^k, n >= 1, appear in the numerator of the o.g.f. for column n of the triangle of rationals A120072(m,n)/A120073(m,n), m >= 2, n = 1..m-1. P(n,x) has degree n-1.
See the W. Lang link under A120072 for the precise form of the o.g.f.s: G(x,n) = -dilog(1-x) + x*P(n,4)/*(A(n)*(n^2)*(1-x)), with A(n) = [1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, ...] = conjectured to be A027451(n), n >= 1.

Examples

			For n=2 the o.g.f. of A120072(m,2)/A120073(m,2) (=[5/36, 3/16, 21/100, 2/9, ...]) is G(x,2) = -dilog(1-x) + x*P(2,x)/(1*4*(1-x)) = -dilog(1-x) + x*(4-3*x)/(4*(1-x)).
Triangle begins:
       1;
       4,      -3;
      36,     -27,     -5;
     144,    -108,    -20,    -7;
    3600,   -2700,   -500,  -175,   -81;
    3600,   -2700,   -500,  -175,   -81,   -44;
  176400, -132300, -24500, -8575, -3969, -2156, -1300;
		

Crossrefs

Row sums (unsigned) give A120079.
Signed row sums conjectured to coincide with A027451.

Programs

  • Magma
    f:= func< n | n eq 1 select 1 else 1/n^2 -1/(n-1)^2 >;
    A120078:= func< n,k | (Lcm([1..n]))^2*f(k) >;
    [A120078(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 26 2023
    
  • Mathematica
    Table[(Apply[LCM, Range[n]])^2*If[k==1, 1, (1-2*k)/(k*(k-1))^2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 26 2023 *)
  • SageMath
    def f(k): return 1 if (k==1) else 1/k^2 - 1/(k-1)^2
    def A120078(n,k): return (lcm(range(1, n+1)))^2*f(k)
    flatten([[A120078(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 26 2023

Formula

T(n, k) = A051418(n) * (1 if k = 1 otherwise 1/k^2 - 1/(k-1)^2). - G. C. Greubel, Apr 26 2023

A166492 Table of numerators of A120070(n,m)/A002260(n,m), 1 <= m < n.

Original entry on oeis.org

3, 8, 5, 15, 6, 7, 24, 21, 16, 9, 35, 16, 9, 5, 11, 48, 45, 40, 33, 24, 13, 63, 30, 55, 12, 39, 14, 15, 80, 77, 24, 65, 56, 15, 32, 17, 99, 48, 91, 21, 15, 32, 51, 9, 19, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21, 143, 70, 45, 32, 119, 18, 95, 10, 7, 22, 23, 168, 165, 160, 153, 144
Offset: 2

Views

Author

Paul Curtz, Oct 15 2009

Keywords

Comments

Numerators of the fractions (n+m)*(n-m)/m.
The numerical values are between A120070(n,m) and A120072(n,m), see A164561.
If we "flatten" the table (enumerate the sequence starting at 1 instead of using the double index), the positions where a common factor is removed from the numerator A120070 and denominator A002260 are at 5, 12, 13, etc., as given by A076537.

Crossrefs

Cf. A129326.

Programs

Extensions

Edited and extended by R. J. Mathar, Oct 21 2009

A175779 Triangle T(n,m) read by rows: numerator of 1/(n-m)^2 - 1/n^2.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 8, 1, 0, 7, 3, 15, 1, 0, 9, 16, 21, 24, 1, 0, 11, 5, 1, 2, 35, 1, 0, 13, 24, 33, 40, 45, 48, 1, 0, 15, 7, 39, 3, 55, 15, 63, 1, 0, 17, 32, 5, 56, 65, 8, 77, 80
Offset: 0

Views

Author

Paul Curtz, Dec 04 2010

Keywords

Comments

T(n,0) is set to zero at the pole m=0. T(n,n) is otherwise set to 1 at the pole n=m.
This is the triangle A061035 augmented by a diagonal of 1's.
Essentially the same information is in A120072, A166492, A172157 and A174233.

Examples

			The triangle starts in row n=0 with columns 0<=m<=n as:
.1.
.0..1.
.0..3..1.
.0..5..8..1.
.0..7..3.15..1.
.0..9.16.21.24..1.
.0.11..5..1..2.35..1.
.0.13.24.33.40.45.48..1.
.0.15..7.39..3.55.15.63..1.
.0.17.32..5.56.65..8.77.80..1.
.0.19..9.51..4..3.21.91..6.99..1.
		

Crossrefs

Cf. A172157, A166925, A171522 (denominators)

Programs

  • Mathematica
    T[n_, n_] := 1; T[n_, k_] := 1/(n - k)^2 - 1/n^2; Table[Numerator[T[n, k]], {n, 0, 20}, {k, 0, n}] // Flatten  (* G. C. Greubel, Sep 19 2018 *)

A309829 Numbers k for which A120077(k) != A007407(k).

Original entry on oeis.org

20, 21, 110, 136, 156, 930, 44310
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 18 2019

Keywords

Comments

The sequence of rationals related to A120077 is f(k) = Sum_{j=1..k-1} (1/j^2 - 1/k^2), motivated by each term's interpretation as the energy difference between shells k and j in a hydrogen atom model. This can easily be seen to be equal to f(k) = (Sum_{j=1..k} 1/j^2) - 1/k. Compare this with g(k) = Sum_{j=1..k} 1/j^2 which is the starting point for A007407. The question is, when does the final subtraction of 1/k change the denominator (in lowest term)? In one case (k=21), the denominator belonging to f(k) is greater than that belonging to g(k). In cases k=20, 110, 136, 156, 930, 44310, the opposite is true.
Will gcd(A120077(k), A007407(k)) always be one of the numbers A120077(k) and A007407(k)?
Should this sequence be infinite?

Crossrefs

Programs

  • PARI
    s=1; for(n=2, +oo, s += 1/n^2; denominator(s)!=denominator(s-1/n) && print1(n, ", "))
Previous Showing 11-18 of 18 results.