cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A248887 Primes p of the form 4m^2+1 such that q=4p^2+1 and r=4q^2+1 are prime.

Original entry on oeis.org

677, 6635777, 28132417, 156400037, 234518597, 381655297, 386751557, 403849217, 820020497, 1215498497, 1298449157, 1539463697, 1580539537, 1839037457, 2072616677, 2774550277, 2969814017, 6147500837, 6194319617, 6703351877, 6937890437
Offset: 1

Views

Author

Zak Seidov, Mar 05 2015

Keywords

Comments

All terms == 7 mod 10. Subsequence of A121834.

Crossrefs

A271725 T(n,k) is an array read by rows, with n > 0 and k=1..4, where row n gives four prime numbers in increasing order with locations in right angles of each concentric square drawn on a distorted version of the Ulam spiral.

Original entry on oeis.org

3, 7, 17, 19, 13, 23, 37, 41, 307, 359, 401, 419, 13807, 14159, 14401, 14519, 41413, 42023, 42437, 42641, 6317683, 6325223, 6330257, 6332771, 22958473, 22972847, 22982437, 22987229, 39081253, 39100007, 39112517, 39118769, 110617807, 110649359, 110670401, 110680919
Offset: 1

Views

Author

Michel Lagneau, Apr 13 2016

Keywords

Comments

See the illustration for more information.
Conjecture: there is an infinity of concentric squares having a prime number in each right angle. The number 5 is the center of all the squares.
It seems that the drawing of an infinite number of concentric squares having a prime number in each corner is impossible in an Ulam spiral. But with a slight distortion of this space, the problem becomes possible.
The illustration (see the link) shows the new version of a spiral with two remarkable orthogonal diagonals containing four classes of prime numbers given by the sequences A125202, A121326, A028871 and A073337 supported by four line segments. These intersect at a single point represented by the prime number 5.
The sequence of the corresponding length of the sides is {s(k)} = {2, 4, 18, 118, 204, 2514, 4792, 6252, 10518, 14032, 16752, 17598, ...}
The primes are defined by the polynomials: [4*m^2-10*m+7, (2*m-1)^2-2, 4*m^2+1, 4*(m+1)^2-6*(m+1)+1]. The sequence of the corresponding m is {b(k)} = {2, 3, 10, 60, 103, 1258, 2397, 3127, 5260, 7017, 8377, 8800, 10375, 11518, 11523, 12498, 15415, 15888, ...} with the relation b(k) = 1 + s(k)/2.
The array begins:
3, 7, 17, 19;
13, 23, 37, 41;
307, 359, 401, 419;
13807, 14159, 14401, 14519;
41413, 42023, 42437, 42641;
...
Construction of the spiral (see the illustration in the link):
. . . . . . . . . . . .
. 42 41 40 39 38 37 . . .
|
. 43 20 19 18 17 36 35 . .
|
. . 21 6 5 16 15 34 . .
|
. . 22 7 4 3 14 33 . .
. . 23 8 1 2 13 32 . .
. . 24 9 10 11 12 31 . .
. . 25 26 27 28 29 30 . .
. . . . . . . . . . .
The first squares of center 5 having a prime number in each vertex are:
19 18 17 41 40 39 38 37
6 5 16 20 19 18 17 36
7 4 3 21 6 5 16 15 . . . .
22 7 4 3 14
23 8 1 2 13

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do :
      x1:=4*n^2-10*n+7:x2:=(2*n-1)^2-2:
      x3:=4*(n+1)^2-6*(n+1)+1:x4:=4*n^2+1:
       if isprime(x1) and isprime(x2) and isprime(x3) and isprime(x4)
        then
         printf("%d %d %d %d %d \n",n,x1,x2,x4,x3):
        else
        fi:
    od:

A296422 Primes that can be represented in the form b^n+1 or b^n-1 where b >= 2 and n >= 2.

Original entry on oeis.org

3, 5, 7, 17, 31, 37, 101, 127, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8191, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901
Offset: 1

Views

Author

Nathaniel J. Strout, Dec 12 2017

Keywords

Comments

Union of A000668 and A121326. - Andrey Zabolotskiy, Dec 21 2017

Crossrefs

Cf. A000040 (primes), A001597 (perfect powers).
Cf. A000668 (Mersenne primes), A121326.

Programs

  • Maple
    N:= 10^5: # to get terms <= N
    R:= 3:
    for b from 2 while b^2+1 <= N do
      p:= 2:
      do
        p:= nextprime(p);
        if b^p-1 > N then break fi;
        if isprime(b^p-1) then R:= R, b^p-1 fi;
      od:
      p:= 1:
      do
        p:= 2*p;
        if b^p+1 > N then break fi;
        if isprime(b^p+1) then R:= R, b^p+1 fi;
      od;
    od:
    sort(convert({R},list)); # Robert Israel, Jan 08 2018
  • Mathematica
    Select[Prime@ Range[2, 10^4], AnyTrue[# + {-1, 1}, Or[# == 1, GCD @@ FactorInteger[#][[All, -1]] > 1] &] &] (* Michael De Vlieger, Dec 13 2017 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if ((p==2) || ispower(p+1) || ispower(p-1), print1(p, ", ")); ); } \\ Michel Marcus, Dec 13 2017

A144852 a(n) = number of distinct prime divisors (taken together) of numbers of the form 4x^2+1 for x<=10^n.

Original entry on oeis.org

9, 87, 836, 8000, 78124, 766585, 7556731, 74771106, 741554656, 7366252759, 73261462211, 729280694469
Offset: 1

Views

Author

Artur Jasinski & Bernhard Helmes (bhelmes(AT)gmx.de), Sep 22 2008

Keywords

Comments

Primes of the form 4x^2+1 see A121326(n) = A002496(n+1).

Crossrefs

Programs

  • Mathematica
    d = 10; l = 0; p = 4; c = {}; a = {}; Do[k = p x^2 + 1; b = Divisors[k]; Do[If[PrimeQ[b[[n]]], AppendTo[a, b[[n]]]], {n, 1, Length[b]}]; If[x == d, a = Union[a]; l = Length[a]; d = 10 d; Print[l]; AppendTo[c, l]], {x, 1, 10000}]; c (*Artur Jasinski*)

Extensions

Fixed broken link, corrected and extended to agree with website. - Ray Chandler, Jun 30 2015

A248892 Primes p of the form 4m^2+1 such that q=4p^2+1, r=4q^2+1 and s=4r^2+1 are all prime.

Original entry on oeis.org

1565891838737, 1985917919077, 2060476510097, 5590084720897, 39623323626437, 94860314619877, 114027286862737, 115071875848337, 117140013119377, 136739205150917, 246382184192357, 254109295929637, 265883157493777, 340055949647237, 378534223873937
Offset: 1

Views

Author

Zak Seidov, Mar 05 2015

Keywords

Comments

Corresponding values of k: 625678,704613,717718,1182168,3147353,4869813,5339178,5363578,5411562,5846777,7848283,7970403,8152962,9220303,9727978.

Crossrefs

Subsequence of A248887. Cf. A001912, A121326, A121834, A248887.

Programs

  • Mathematica
    apQ[p_]:=Module[{q=4p^2+1,r},r=4q^2+1;AllTrue[{p,q,r,4r^2+1},PrimeQ]]; Select[ 4*Range[ 10^7]^2+1,apQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 28 2019 *)
Previous Showing 11-15 of 15 results.