A124237
Riordan array (1/(1-2x), x/((1-x)(1-2x))).
Original entry on oeis.org
1, 2, 1, 4, 5, 1, 8, 17, 8, 1, 16, 49, 39, 11, 1, 32, 129, 150, 70, 14, 1, 64, 321, 501, 338, 110, 17, 1, 128, 769, 1524, 1375, 640, 159, 20, 1, 256, 1793, 4339, 4973, 3075, 1083, 217, 23, 1, 512, 4097, 11762, 16508
Offset: 0
Triangle begins
1,
2, 1,
4, 5, 1,
8, 17, 8, 1,
16, 49, 39, 11, 1,
32, 129, 150, 70, 14, 1
A173731
a(n) = a(n-1) * (11*a(n-1) - a(n-2)) / (a(n-1) + 4*a(n-2)), a(0) = a(1) = 0, a(2) = 1.
Original entry on oeis.org
0, 0, 1, 11, 88, 638, 4466, 30856, 212135, 1455685, 9981840, 68428140, 469043796, 3214953456, 22035826813, 151036348463, 1035219958696, 7095506886986, 48633337477670, 333337879614520, 2284731883069955, 15659785467455305
Offset: 0
x^2 + 11*x^3 + 88*x^4 + 638*x^5 + 4466*x^6 + 30856*x^7 + 212135*x^8 + ...
-
[(4+Fibonacci(4*n+1)/3+Fibonacci(4*n + 3)/3-5* Fibonacci(2*n+1)) / 20: n in [0..25]]; // Vincenzo Librandi, Nov 30 2016
-
Table[(4 + Fibonacci[4*n + 1]/3 + Fibonacci[4*n + 3]/3 - 5*Fibonacci[2*n + 1])/20, {n, 0, 25}] (* or *) LinearRecurrence[{11, -33, 33, -11, 1}, {0, 0, 1, 11, 88}, 25] (* G. C. Greubel, Nov 29 2016 *)
-
{a(n) = (4 + fibonacci(4*n + 1)/3 + fibonacci(4*n + 3)/3 - 5 * fibonacci(2*n + 1)) / 20}
A202209
Triangle T(n,k), read by rows, given by (2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 13, 5, 0, 0, 34, 19, 1, 0, 0, 89, 65, 8, 0, 0, 0, 233, 210, 42, 1, 0, 0, 0, 610, 654, 183, 11, 0, 0, 0, 0, 1597, 1985, 717, 74, 1, 0, 0, 0, 0, 4181, 5911, 2622, 394, 14, 0, 0, 0, 0, 0
Offset: 0
Triangle begins :
1
2, 0
5, 1, 0
13, 5, 0, 0
34, 19, 1, 0, 0
89, 65, 8, 0, 0, 0
233, 210, 42, 1, 0, 0, 0
A373644
a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-7*k,k).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 6, 8, 11, 18, 29, 44, 64, 96, 148, 228, 345, 519, 786, 1198, 1824, 2766, 4190, 6358, 9661, 14674, 22268, 33786, 51284, 77866, 118212, 179426, 272333, 413391, 627547, 952613, 1445995, 2194911, 3331793, 5057593, 7677250, 11653681, 17689720
Offset: 0
A156561
Floor(Fibonacci(2n+1)/9).
Original entry on oeis.org
0, 0, 0, 1, 3, 9, 25, 67, 177, 464, 1216, 3184, 8336, 21824, 57136, 149585, 391619, 1025273, 2684201, 7027331, 18397793, 48166048, 126100352, 330135008, 864304672, 2262779008, 5924032352, 15509318049, 40603921795, 106302447337, 278303420217
Offset: 0
-
Floor[Fibonacci[2*Range[0,30]+1]/9] (* or *) LinearRecurrence[{4,-4,1,0,0,-1,4,-4,1},{0,0,0,1,3,9,25,67,177},31] (* Harvey P. Dale, Jun 06 2016 *)
Edited and extended by
R. J. Mathar, Jan 23 2009, Feb 23 2009
A183189
Triangle T(n,k), read by rows, given by (2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 2, 0, 6, 1, 0, 18, 5, 0, 0, 54, 21, 1, 0, 0, 162, 81, 8, 0, 0, 0, 486, 297, 45, 1, 0, 0, 0, 1458, 1053, 216, 11, 0, 0, 0, 0, 4374, 3645, 945, 78, 1, 0, 0, 0, 0, 13122, 12393, 3888, 450, 14, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
2, 0
6, 1, 0
18, 5, 0, 0
54, 21, 1, 0, 0
162, 81, 8, 0, 0, 0
486, 297, 45, 1, 0, 0, 0
A238156
Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 7, 4, 0, 2, 11, 16, 5, 0, 2, 15, 36, 30, 6, 0, 2, 19, 64, 91, 50, 7, 0, 2, 23, 100, 204, 196, 77, 8, 0, 2, 27, 144, 385, 540, 378, 112, 9, 0, 2, 31, 196, 650, 1210, 1254, 672, 156, 10, 0, 2, 35, 256, 1015, 2366, 3289, 2640, 1122, 210, 11
Offset: 0
Triangle begins:
1;
0, 2;
0, 2, 3;
0, 2, 7, 4;
0, 2, 11, 16, 5;
0, 2, 15, 36, 30, 6;
0, 2, 19, 64, 91, 50, 7;
0, 2, 23, 100, 204, 196, 77, 8;
0, 2, 27, 144, 385, 540, 278, 112, 9;
0, 2, 31, 196, 650, 1210, 1254, 672, 156, 10;
0, 2, 35, 256, 1015, 2366, 3289, 2640, 1122, 210, 11;
...
Comments