cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A342518 Number of strict integer partitions of n with strictly decreasing first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 12, 13, 17, 18, 21, 24, 28, 30, 34, 37, 41, 47, 52, 56, 63, 68, 72, 83, 89, 99, 108, 117, 128, 139, 149, 163, 179, 189, 203, 217, 233, 250, 272, 289, 305, 329, 355, 381, 410, 438, 471, 505, 540, 571, 607, 645, 683, 726
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict integer partitions of n with strictly decreasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (12,10,6,3,1) has first quotients (5/6,3/5,1/2,1/3) so is counted under a(32), even though the differences (-2,-4,-3,-2) are not strictly decreasing.
The a(1) = 1 through a(13) = 12 partitions (A..D = 10..13):
  1   2   3    4    5    6     7    8     9     A      B     C     D
          21   31   32   42    43   53    54    64     65    75    76
                    41   51    52   62    63    73     74    84    85
                         321   61   71    72    82     83    93    94
                                    431   81    91     92    A2    A3
                                          432   541    A1    B1    B2
                                          531   631    542   543   C1
                                                4321   641   642   652
                                                       731   651   742
                                                             741   751
                                                             831   841
                                                                   5431
		

Crossrefs

The version for differences instead of quotients is A320388.
The version for chains of divisors is A342086 (non-strict: A057567).
The non-strict ordered version is A342494.
The non-strict version is A342499 (ranking: A342525).
The strictly increasing version is A342517.
The weakly decreasing version is A342519.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A045690 counts sets with maximum n with all adjacent elements y < 2x.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict: A342097).
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342519 Number of strict integer partitions of n with weakly decreasing first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 12, 14, 15, 18, 18, 21, 25, 29, 32, 38, 40, 44, 51, 57, 61, 66, 73, 77, 89, 97, 104, 115, 124, 135, 147, 160, 174, 193, 206, 218, 238, 254, 272, 293, 313, 331, 353, 381, 408, 436, 468, 499, 532, 569, 610, 651, 694, 735, 783
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also called log-concave-down strict partitions.
Also the number of reversed strict partitions of n with weakly decreasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (10,7,4,2,1) has first quotients (7/10,4/7,1/2,1/2) so is counted under a(24), even though the first differences (-3,-3,-2,-1) are weakly increasing.
The a(1) = 1 through a(13) = 14 strict partitions (A..D = 10..13):
  1   2   3    4    5    6     7     8     9     A      B     C      D
          21   31   32   42    43    53    54    64     65    75     76
                    41   51    52    62    63    73     74    84     85
                         321   61    71    72    82     83    93     94
                               421   431   81    91     92    A2     A3
                                           432   541    A1    B1     B2
                                           531   631    542   543    C1
                                                 4321   641   642    652
                                                        731   651    742
                                                              741    751
                                                              831    841
                                                              5421   931
                                                                     5431
                                                                     6421
		

Crossrefs

The non-strict ordered version is A069916.
The version for differences instead of quotients is A320382.
The non-strict version is A342513 (ranking: A342526).
The weakly increasing version is A342516.
The strictly decreasing version is A342518.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A057567 counts strict chains of divisors with weakly increasing quotients.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y (strict: A342095).
A342528 counts compositions with alternately weakly increasing parts.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GreaterEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342521 Heinz numbers of integer partitions with distinct first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 1365 are {2,3,4,6}, with first quotients (3/2,4/3,3/2), so 1365 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   24: {1,1,1,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  100: {1,1,3,3}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A130091.
For differences instead of quotients we have A325368 (count: A325325).
These partitions are counted by A342514 (strict: A342520, ordered: A342529).
The equal instead of distinct version is A342522.
The version counting strict divisor chains is A342530.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],UnsameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342524 Heinz numbers of integer partitions with strictly increasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 84 are {1,1,2,4}, with first quotients (1,2,2), so 84 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   50: {1,3,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For differences instead of quotients we have A325456 (count: A240027).
For multiplicities (prime signature) instead of quotients we have A334965.
The version counting strict divisor chains is A342086.
These partitions are counted by A342498 (strict: A342517, ordered: A342493).
The weakly increasing version is A342523.
The strictly decreasing version is A342525.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342525 Heinz numbers of integer partitions with strictly decreasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 150 are {1,2,3,3}, with first quotients (2,3/2,1), so 150 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A304686.
For differences instead of quotients we have A325457 (count: A320470).
The version counting strict divisor chains is A342086.
These partitions are counted by A342499 (strict: A342518, ordered: A342494).
The strictly increasing version is A342524.
The weakly decreasing version is A342526.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A124433 Irregular array {a(n,m)} read by rows where (sum{n>=1} sum{m=1 to A001222(n)+1} a(n,m)*y^m/n^x) = 1/(zeta(x)-1+1/y) for all x and y where the double sum converges.

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 1, 0, -1, 0, -1, 2, 0, -1, 0, -1, 2, -1, 0, -1, 1, 0, -1, 2, 0, -1, 0, -1, 4, -3, 0, -1, 0, -1, 2, 0, -1, 2, 0, -1, 3, -3, 1, 0, -1, 0, -1, 4, -3, 0, -1, 0, -1, 4, -3, 0, -1, 2, 0, -1, 2, 0, -1, 0, -1, 6, -9, 4, 0, -1, 1, 0, -1, 2, 0, -1, 2, -1, 0, -1, 4, -3, 0, -1, 0, -1, 6, -6, 0, -1, 0, -1, 4, -6, 4, -1, 0, -1, 2, 0, -1, 2, 0, -1
Offset: 1

Views

Author

Leroy Quet, Dec 15 2006

Keywords

Comments

Row n has A001222(n)+1 terms. The polynomial P_n(y) = (sum{m=1 to A001222(n)+1} a(n,m)*y^m) is a generalization of the Mobius (Moebius) function, where P_n(1) = A008683(n).
From Gus Wiseman, Aug 24 2020: (Start)
Up to sign, also the number of strict length-k chains of divisors from n to 1, 1 <= k <= 1 + A001222(n). For example, row n = 36 counts the following chains (empty column indicated by dot):
. 36/1 36/2/1 36/4/2/1 36/12/4/2/1
36/3/1 36/6/2/1 36/12/6/2/1
36/4/1 36/6/3/1 36/12/6/3/1
36/6/1 36/9/3/1 36/18/6/2/1
36/9/1 36/12/2/1 36/18/6/3/1
36/12/1 36/12/3/1 36/18/9/3/1
36/18/1 36/12/4/1
36/12/6/1
36/18/2/1
36/18/3/1
36/18/6/1
36/18/9/1
(End)

Examples

			1/(zeta(x) - 1 + 1/y) = y - y^2/2^x - y^2/3^x + ( - y^2 + y^3)/4^x - y^2/5^x + ( - y^2 + 2y^3)/6^x - y^2/7^x + ...
From _Gus Wiseman_, Aug 24 2020: (Start)
The sequence of rows begins:
     1: 1              16: 0 -1 3 -3 1     31: 0 -1
     2: 0 -1           17: 0 -1            32: 0 -1 4 -6 4 -1
     3: 0 -1           18: 0 -1 4 -3       33: 0 -1 2
     4: 0 -1 1         19: 0 -1            34: 0 -1 2
     5: 0 -1           20: 0 -1 4 -3       35: 0 -1 2
     6: 0 -1 2         21: 0 -1 2          36: 0 -1 7 -12 6
     7: 0 -1           22: 0 -1 2          37: 0 -1
     8: 0 -1 2 -1      23: 0 -1            38: 0 -1 2
     9: 0 -1 1         24: 0 -1 6 -9 4     39: 0 -1 2
    10: 0 -1 2         25: 0 -1 1          40: 0 -1 6 -9 4
    11: 0 -1           26: 0 -1 2          41: 0 -1
    12: 0 -1 4 -3      27: 0 -1 2 -1       42: 0 -1 6 -6
    13: 0 -1           28: 0 -1 4 -3       43: 0 -1
    14: 0 -1 2         29: 0 -1            44: 0 -1 4 -3
    15: 0 -1 2         30: 0 -1 6 -6       45: 0 -1 4 -3
(End)
		

Crossrefs

A008480 gives rows ends (up to sign).
A008683 gives row sums (the Moebius function).
A073093 gives row lengths.
A074206 gives unsigned row sums.
A097805 is the restriction to powers of 2 (up to sign).
A251683 is the unsigned version with zeros removed.
A334996 is the unsigned version (except with a(1) = 0).
A334997 is an unsigned non-strict version.
A337107 is the restriction to factorial numbers.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A337105 counts strict chains of divisors from n! to 1.

Programs

  • Mathematica
    f[l_List] := Block[{n = Length[l] + 1, c},c = Plus @@ Last /@ FactorInteger[n];Append[l, Prepend[ -Plus @@ Pick[PadRight[ #, c] & /@ l, Mod[n, Range[n - 1]], 0],0]]];Nest[f, {{1}}, 34] // Flatten(* Ray Chandler, Feb 13 2007 *)
    chnsc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]];
    Table[(-1)^k*Length[Select[chnsc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* Gus Wiseman, Aug 24 2020 *)

Formula

a(1,1)=1. a(n,1) = 0 for n>=2. a(n,m+1) = -sum{k|n,k < n} a(k,m), where, for the purpose of this sum, a(k,m) = 0 if m > A001222(k)+1.

Extensions

Extended by Ray Chandler, Feb 13 2007

A167439 Length of the longest partition of n into distinct parts, with each part divisible by the next one.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 2, 3, 3, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 5, 3, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 6, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 5, 6, 4, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 6, 5, 4, 4, 5, 5, 5, 4, 5, 4
Offset: 0

Views

Author

Max Alekseyev, Nov 13 2009, Nov 15 2009

Keywords

Comments

a(n) > sqrt(log(n))/2.

References

  • V. A. Sadovnichiy, A. A. Grigoryan and S. V. Konyagin (1987), "Problems of mathematical olympiads for university students". Section 4.1, problem 25. (in Russian)

Crossrefs

Programs

  • PARI
    { a(n,m=0) = local(r=0); if(n==0,return(0)); fordiv(n,d, if(d<=m,next); r=max(r,1+a((n-d)\d,1)) ); r }

Formula

a(n) = max{ A167866(n), A167866(n-1) + 1 }.

A167866 Length of the longest partition of n into distinct parts greater than 1, with each part divisible by the next one.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 3, 3, 3, 1, 2, 2, 3, 3, 3, 1, 4, 1, 3, 3, 3, 3, 3, 1, 4, 3, 3, 1, 4, 1, 4, 4, 4, 1, 3, 3, 3, 3, 3, 1, 4, 3, 4, 4, 4, 1, 4, 1, 5, 4, 3, 3, 4, 1, 4, 4, 4, 1, 4, 1, 4, 4, 4, 3, 5, 1, 4, 4, 4, 1, 4, 3, 5, 4, 4, 1, 5, 3, 5, 5, 5, 4, 3, 1, 4, 4, 4, 1, 4, 1, 4
Offset: 0

Views

Author

Max Alekseyev, Nov 13 2009

Keywords

Comments

Formally speaking, a(1) is not defined but letting a(1)=0 does not break any formula.

Crossrefs

Programs

  • PARI
    { A167866(n) = local(r=0); if(n<=1,return(0)); fordiv(n,d, if(d>1, r=max(r,A167866((n-d)\d)); ); ); r+1 }

Formula

a(0) = a(1) = 0 and for n>=2, a(n) = 1 + max_{d|n, d>1} a((n-d)/d).

A342494 Number of compositions of n with strictly decreasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 15, 21, 30, 39, 50, 65, 82, 103, 129, 160, 196, 240, 293, 352, 422, 500, 593, 706, 832, 974, 1138, 1324, 1534, 1783, 2054, 2362, 2712, 3108, 3552, 4051, 4606, 5232, 5935, 6713, 7573, 8536, 9597, 10773, 12085, 13534, 15119, 16874, 18809
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (1,2,3,4,2) has first quotients (2,3/2,4/3,1/2) so is counted under a(12).
The a(1) = 1 through a(6) = 12 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,2,1)  (4,1)    (4,2)
                              (1,2,2)  (5,1)
                              (1,3,1)  (1,2,3)
                              (2,2,1)  (1,3,2)
                                       (1,4,1)
                                       (2,3,1)
                                       (3,2,1)
                                       (1,2,2,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325548.
The strictly increasing version is A342493.
The unordered version is A342499, ranked by A342525.
The strict unordered version is A342518.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]

Extensions

a(21)-a(49) from Alois P. Heinz, Mar 18 2021

A342497 Number of integer partitions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 25, 32, 36, 43, 49, 60, 65, 75, 83, 96, 106, 121, 131, 150, 163, 178, 194, 217, 230, 254, 275, 300, 320, 350, 374, 411, 439, 470, 503, 548, 578, 625, 666, 710, 758, 815, 855, 913, 970, 1029, 1085, 1157, 1212, 1288, 1360
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also called log-concave-up partitions.
Also the number of reversed integer partitions of n with weakly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition y = (6,3,2,1,1) has first quotients (1/2,2/3,1/2,1) so is not counted under a(13). However, the first differences (-3,-1,-1,0) are weakly increasing, so y is counted under A240026(13).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (311)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (411)     (421)      (422)
                                     (3111)    (511)      (521)
                                     (21111)   (4111)     (611)
                                     (111111)  (31111)    (2222)
                                               (211111)   (4211)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The version for differences instead of quotients is A240026.
The ordered version is A342492.
The strictly increasing version is A342498.
The weakly decreasing version is A342513.
The strict case is A342516.
The Heinz numbers of these partitions are A342523.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
Previous Showing 31-40 of 43 results. Next