cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A074206 Kalmár's [Kalmar's] problem: number of ordered factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2003

Keywords

Comments

a(0)=0, a(1)=1; thereafter a(n) is the number of ordered factorizations of n as a product of integers greater than 1.
Kalmár (1931) seems to be the earliest reference that mentions this sequence (as opposed to A002033). - N. J. A. Sloane, May 05 2016
a(n) is the permanent of the n-1 X n-1 matrix A with (i,j) entry = 1 if j|i+1 and = 0 otherwise. This is because ordered factorizations correspond to nonzero elementary products in the permanent. For example, with n=6, 3*2 -> 1,3,6 [partial products] -> 6,3,1 [reverse list] -> (6,3)(3,1) [partition into pairs with offset 1] -> (5,3)(2,1) [decrement first entry] -> (5,3)(2,1)(1,2)(3,4)(4,5) [append pairs (i,i+1) to get a permutation] -> elementary product A(1,2)A(2,1)A(3,4)A(4,5)A(5,3). - David Callan, Oct 19 2005
This sequence is important in describing the amount of energy in all wave structures in the Universe according to harmonics theory. - Ray Tomes (ray(AT)tomes.biz), Jul 22 2007
a(n) appears to be the number of permutation matrices contributing to the Moebius function. See A008683 for more information. Also a(n) appears to be the Moebius transform of A067824. Furthermore it appears that except for the first term a(n)=A067824(n)*(1/2). Are there other sequences such that when the Moebius transform is applied, the new sequence is also a constant factor times the starting sequence? - Mats Granvik, Jan 01 2009
Numbers divisible by n distinct primes appear to have ordered factorization values that can be found in an n-dimensional summatory Pascal triangle. For example, the ordered factorization values for numbers divisible by two distinct primes can be found in table A059576. - Mats Granvik, Sep 06 2009
Inverse Mobius transform of A174725 and also except for the first term, inverse Mobius transform of A174726. - Mats Granvik, Mar 28 2010
a(n) is a lower bound on the worst-case number of solutions to the probed partial digest problem for n fragments of DNA; see the Newberg & Naor reference, below. - Lee A. Newberg, Aug 02 2011
All integers greater than 1 are perfect numbers over this sequence (for definition of A-perfect numbers, see comment to A175522). - Vladimir Shevelev, Aug 03 2011
If n is squarefree, then a(n) = A000670(A001221(n)) = A000670(A001222(n)). - Vladimir Shevelev and Franklin T. Adams-Watters, Aug 05 2011
A034776 lists the values taken by this sequence. - Robert G. Wilson v, Jun 02 2012
From Gus Wiseman, Aug 25 2020: (Start)
Also the number of strict chains of divisors from n to 1. For example, the a(n) chains for n = 1, 2, 4, 6, 8, 12, 30 are:
1 2/1 4/1 6/1 8/1 12/1 30/1
4/2/1 6/2/1 8/2/1 12/2/1 30/2/1
6/3/1 8/4/1 12/3/1 30/3/1
8/4/2/1 12/4/1 30/5/1
12/6/1 30/6/1
12/4/2/1 30/10/1
12/6/2/1 30/15/1
12/6/3/1 30/6/2/1
30/6/3/1
30/10/2/1
30/10/5/1
30/15/3/1
30/15/5/1
(End)
a(n) is also the number of ways to tile a strip of length log(n) with tiles having lengths {log(k) : k>=2}. - David Bevan, Jan 07 2025

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 3*x^10 + ...
Number of ordered factorizations of 8 is 4: 8 = 2*4 = 4*2 = 2*2*2.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • Kalmár, Laszlo, A "factorisatio numerorum" problemajarol [Hungarian], Matemat. Fizik. Lapok, 38 (1931), 1-15.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.

Crossrefs

Apart from initial term, same as A002033.
a(A002110) = A000670, row sums of A251683.
A173382 (and A025523) gives partial sums.
A124433 has these as unsigned row sums.
A334996 has these as row sums.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A008480 counts ordered prime factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A253249 counts strict chains of divisors.

Programs

  • Haskell
    a074206 n | n <= 1 = n
    | otherwise = 1 + (sum $ map (a074206 . (div n)) $
    tail $ a027751_row n)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    A074206:= proc(n) option remember; if n > 1 then `+`(op(apply(A074206, numtheory[divisors](n)[1..-2]))) else n fi end: # M. F. Hasler, Oct 12 2018
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[20000] (* N. J. A. Sloane, May 04 2016, based on program in A002033 *)
    ccc[n_]:=Switch[n,0,{},1,{{1}},,Join@@Table[Prepend[#,n]&/@ccc[d],{d,Most[Divisors[n]]}]]; Table[Length[ccc[n]],{n,0,100}] (* _Gus Wiseman, Aug 25 2020 *)
  • PARI
    A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A/=2; A[1]=1; concat(0,A) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    {a(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, a(A[k])))}; /* Michael Somos, Dec 26 2016 */
    
  • PARI
    A074206(n)=if(n>1, sumdiv(n, i, if(iA074206(i))),n) \\ M. F. Hasler, Oct 12 2018
    
  • PARI
    A74206=[1]; A074206(n)={if(#A74206A074206(i)))} \\ Use memoization for computing many values. - M. F. Hasler, Oct 12 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, for(j = 2, n \ i, res[i*j] += res[i])); concat(0, res)} \\ David A. Corneth, Oct 13 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, d = divisors(i); res[i] += sum(j = 1, #d-1, res[d[j]])); concat(0, res)} \\ somewhat faster than progs above for finding first terms of n. \\ David A. Corneth, Oct 12 2018
    
  • PARI
    a(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Aug 30 2020
    
  • Python
    from math import prod
    from functools import lru_cache
    from sympy import divisors, factorint, prime
    @lru_cache(maxsize=None)
    def A074206(n): return sum(A074206(d) for d in divisors(prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n).values(),reverse=True))),generator=True,proper=True)) if n > 1 else n # Chai Wah Wu, Sep 16 2022
  • SageMath
    @cached_function
    def minus_mu(n):
        if n < 2: return n
        return sum(minus_mu(d) for d in divisors(n)[:-1])
    # Note that changing the sign of the sum gives the Möbius function A008683.
    print([minus_mu(n) for n in (0..96)]) # Peter Luschny, Dec 26 2016
    

Formula

With different offset: a(n) = sum of all a(i) such that i divides n and i < n. - Clark Kimberling
a(p^k) = 2^(k-1) if k>0 and p is a prime.
Dirichlet g.f.: 1/(2-zeta(s)). - Herbert S. Wilf, Apr 29 2003
a(n) = A067824(n)/2 for n>1; a(A122408(n)) = A122408(n)/2. - Reinhard Zumkeller, Sep 03 2006
If p,q,r,... are distinct primes, then a(p*q)=3, a(p^2*q)=8, a(p*q*r)=13, a(p^3*q)=20, etc. - Vladimir Shevelev, Aug 03 2011 [corrected by Charles R Greathouse IV, Jun 02 2012]
a(0) = 0, a(1) = 1; a(n) = [x^n] Sum_{k=1..n-1} a(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 11 2017
a(n) = a(A046523(n)); a(A025487(n)) = A050324(n): a(n) depends only on the nonzero exponents in the prime factorization of n, more precisely prime signature of n, cf. A124010 and A320390. - M. F. Hasler, Oct 12 2018
a(n) = A000670(A001221(n)) for squarefree n. In particular a(A002110(n)) = A000670(n). - Amiram Eldar, May 13 2019
a(n) = A050369(n)/n, for n>=1. - Ridouane Oudra, Aug 31 2019
a(n) = A361665(A181819(n)). - Pontus von Brömssen, Mar 25 2023
From Ridouane Oudra, Nov 02 2023: (Start)
If p,q are distinct primes, and n,m>0 then we have:
a(p^n*q^m) = Sum_{k=0..min(n,m)} 2^(n+m-k-1)*binomial(n,k)*binomial(m,k);
More generally: let tau[k](n) denote the number of ordered factorizations of n as a product of k terms, also named the k-th Piltz function (see A007425), then we have for n>1:
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=1..j} (-1)^(j-k)*binomial(j,k)*tau[k](n), or
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=0..j-1} (-1)^k*binomial(j,k)*tau[j-k](n). (End)

Extensions

Originally this sequence was merged with A002033, the number of perfect partitions. Herbert S. Wilf suggested that it warrants an entry of its own.

A251683 Irregular triangular array: T(n,k) is the number of ordered factorizations of n with exactly k factors, n >= 1, 1 <= k <= A086436(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 4, 3, 1, 1, 4, 3, 1, 2, 1, 2, 1, 1, 6, 9, 4, 1, 1, 1, 2, 1, 2, 1, 1, 4, 3, 1, 1, 6, 6, 1, 1, 4, 6, 4, 1, 1, 2, 1, 2, 1, 2, 1, 7, 12, 6, 1, 1, 2, 1, 2, 1, 6, 9, 4
Offset: 1

Views

Author

Geoffrey Critzer, Dec 06 2014

Keywords

Comments

Row sums = A074206.
Row lengths give A086436.
T(n,2) = A070824(n).
T(n,3) = A200221(n).
Sum_{k>=1} k*T(n,k) = A254577.
For all n > 1, Sum_{k=1..A086436(n)} (-1)^k*T(n,k) = A008683(n). - Geoffrey Critzer, May 25 2018
From Gus Wiseman, Aug 21 2020: (Start)
Also the number of strict length k + 1 chains of divisors from n to 1. For example, row n = 24 counts the following chains:
24/1 24/2/1 24/4/2/1 24/8/4/2/1
24/3/1 24/6/2/1 24/12/4/2/1
24/4/1 24/6/3/1 24/12/6/2/1
24/6/1 24/8/2/1 24/12/6/3/1
24/8/1 24/8/4/1
24/12/1 24/12/2/1
24/12/3/1
24/12/4/1
24/12/6/1
(End)

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1;
  1, 1;
  1;
  1, 2;
  1;
  1, 2, 1;
  1, 1;
  1, 2;
  1;
  1, 4, 3;
  1;
  1, 2;
  1, 2;
  ...
There are 8 ordered factorizations of the integer 12: 12, 6*2, 4*3, 3*4, 2*6, 3*2*2, 2*3*2, 2*2*3.  So T(12,1)=1, T(12,2)=4, and T(12,3)=3.
		

Crossrefs

A008480 gives rows ends.
A086436 gives row lengths.
A124433 is the same except for signs and zeros.
A334996 is the same except for zeros.
A337107 is the restriction to factorial numbers (but with zeros).
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A074206 counts strict chains of divisors from n to 1.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict nonempty chains of divisors of n.
A337071 counts strict chains of divisors starting with n!.
A337256 counts strict chains of divisors of n.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; expand(x*(1+
          add(b(n/d), d=divisors(n) minus {1, n})))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=1..100);  # Alois P. Heinz, Dec 07 2014
  • Mathematica
    f[1] = {{}};
    f[n_] := f[n] =
      Level[Table[
        Map[Prepend[#, d] &, f[n/d]], {d, Rest[Divisors[n]]}], {2}];
    Prepend[Map[Select[#, # > 0 &] &,
      Drop[Transpose[
        Table[Map[Count[#, k] &,
          Map[Length, Table[f[n], {n, 1, 40}], {2}]], {k, 1, 10}]],
       1]],{1}] // Grid
    (* Second program: *)
    b[n_] := b[n] = x(1+Sum[b[n/d], {d, Divisors[n]~Complement~{1, n}}]);
    T[n_] := CoefficientList[b[n]/x, x];
    Array[T, 100] // Flatten (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

Formula

Dirichlet g.f.: 1/(1 - y*(zeta(x)-1)).

A334996 Irregular triangle read by rows: T(n, m) is the number of ways to distribute Omega(n) objects into precisely m distinct boxes, with no box empty (Omega(n) >= m).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 3, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 4, 3, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 6, 9, 4, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 4, 3, 0, 1, 0, 1, 6, 6
Offset: 1

Views

Author

Stefano Spezia, May 19 2020

Keywords

Comments

n is the specification number for a set of Omega(n) objects (see Theorem 3 in Beekman's article).
The specification number of a multiset is also called its Heinz number. - Gus Wiseman, Aug 25 2020
From Gus Wiseman, Aug 25 2020: (Start)
For n > 1, T(n,k) is also the number of ordered factorizations of n into k factors > 1. For example, row n = 24 counts the following ordered factorizations (the first column is empty):
24 3*8 2*2*6 2*2*2*3
4*6 2*3*4 2*2*3*2
6*4 2*4*3 2*3*2*2
8*3 2*6*2 3*2*2*2
12*2 3*2*4
2*12 3*4*2
4*2*3
4*3*2
6*2*2
For n > 1, T(n,k) is also the number of strict length-k chains of divisors from n to 1. For example, row n = 36 counts the following chains (the first column is empty):
36/1 36/2/1 36/4/2/1 36/12/4/2/1
36/3/1 36/6/2/1 36/12/6/2/1
36/4/1 36/6/3/1 36/12/6/3/1
36/6/1 36/9/3/1 36/18/6/2/1
36/9/1 36/12/2/1 36/18/6/3/1
36/12/1 36/12/3/1 36/18/9/3/1
36/18/1 36/12/4/1
36/12/6/1
36/18/2/1
36/18/3/1
36/18/6/1
36/18/9/1
(End)

Examples

			The triangle T(n, m) begins
  n\m| 0     1     2     3     4
  ---+--------------------------
   1 | 0
   2 | 0     1
   3 | 0     1
   4 | 0     1     1
   5 | 0     1
   6 | 0     1     2
   7 | 0     1
   8 | 0     1     2     1
   9 | 0     1     1
  10 | 0     1     2
  11 | 0     1
  12 | 0     1     4     3
  13 | 0     1
  14 | 0     1     2
  15 | 0     1     2
  16 | 0     1     3     3     1
  ...
From _Gus Wiseman_, Aug 25 2020: (Start)
Row n = 36 counts the following distributions of {1,1,2,2} (the first column is empty):
  {1122}  {1}{122}  {1}{1}{22}  {1}{1}{2}{2}
          {11}{22}  {1}{12}{2}  {1}{2}{1}{2}
          {112}{2}  {11}{2}{2}  {1}{2}{2}{1}
          {12}{12}  {1}{2}{12}  {2}{1}{1}{2}
          {122}{1}  {12}{1}{2}  {2}{1}{2}{1}
          {2}{112}  {1}{22}{1}  {2}{2}{1}{1}
          {22}{11}  {12}{2}{1}
                    {2}{1}{12}
                    {2}{11}{2}
                    {2}{12}{1}
                    {2}{2}{11}
                    {22}{1}{1}
(End)
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000007 (1st column), A000012 (2nd column), A001222 (Omega function), A002033 (row sums shifted left), A007318.
A008480 gives rows ends.
A073093 gives row lengths.
A074206 gives row sums.
A112798 constructs the multiset with each specification number.
A124433 is a signed version.
A251683 is the version with zeros removed.
A334997 is the non-strict version.
A337107 is the restriction to factorial numbers.
A001055 counts factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A337105 counts strict chains of divisors from n! to 1.

Programs

  • Mathematica
    tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; (* A334997 *)
    T[n_,m_]:=Sum[(-1)^k*Binomial[m,k]*tau[n,m-k-1],{k,0,m-1}]; Table[T[n,m],{n,1,30},{m,0,PrimeOmega[n]}]//Flatten
    (* second program *)
    chc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]]; (* change {{}} to {} if a(1) = 0 *)
    Table[Length[Select[chc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* Gus Wiseman, Aug 25 2020 *)
  • PARI
    TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334997
    T(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1));
    tabf(nn) = {for (n=1, nn, print(vector(bigomega(n)+1, k, T(n, k-1))););} \\ Michel Marcus, May 20 2020

Formula

T(n, m) = Sum_{k=0..m-1} (-1)^k*binomial(m,k)*tau_{m-k-1}(n), where tau_s(r) = A334997(r, s) (see Theorem 3, Lemma 1 and Lemma 2 in Beekman's article).
Conjecture: Sum_{m=0..Omega(n)} T(n, m) = A002033(n-1) for n > 1.
The above conjecture is true since T(n, m) is also the number of ordered factorizations of n into m factors (see Comments) and A002033(n-1) is the number of ordered factorizations of n. - Stefano Spezia, Aug 21 2025

A337255 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 5, 7, 3, 1, 1, 1, 3, 2, 1, 3, 2, 1, 4, 6, 4, 1, 1, 1, 1, 5, 7, 3, 1, 1, 1, 5, 7, 3, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 15, 13, 4, 1, 2, 1, 1, 3, 2, 1, 3, 3, 1, 1, 5, 7, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Examples

			Sequence of rows begins:
     1: {1}           16: {1,4,6,4,1}
     2: {1,1}         17: {1,1}
     3: {1,1}         18: {1,5,7,3}
     4: {1,2,1}       19: {1,1}
     5: {1,1}         20: {1,5,7,3}
     6: {1,3,2}       21: {1,3,2}
     7: {1,1}         22: {1,3,2}
     8: {1,3,3,1}     23: {1,1}
     9: {1,2,1}       24: {1,7,15,13,4}
    10: {1,3,2}       25: {1,2,1}
    11: {1,1}         26: {1,3,2}
    12: {1,5,7,3}     27: {1,3,3,1}
    13: {1,1}         28: {1,5,7,3}
    14: {1,3,2}       29: {1,1}
    15: {1,3,2}       30: {1,7,12,6}
Row n = 24 counts the following chains:
  24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
      24/2   24/3/1   24/6/2/1   24/12/4/2/1
      24/3   24/4/1   24/6/3/1   24/12/6/2/1
      24/4   24/4/2   24/8/2/1   24/12/6/3/1
      24/6   24/6/1   24/8/4/1
      24/8   24/6/2   24/8/4/2
      24/12  24/6/3   24/12/2/1
             24/8/1   24/12/3/1
             24/8/2   24/12/4/1
             24/8/4   24/12/4/2
             24/12/1  24/12/6/1
             24/12/2  24/12/6/2
             24/12/3  24/12/6/3
             24/12/4
             24/12/6
		

Crossrefs

A008480 gives rows ends.
A067824 gives row sums.
A073093 gives row lengths.
A334996 appears to be the case of chains ending with 1.
A337071 is the sum of row n!.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A122651 counts chains of divisors summing to n.
A167865 counts chains of divisors > 1 summing to n.
A251683 counts chains of divisors from n to 1 by length.
A253249 counts nonempty chains of divisors.
A337070 counts chains of divisors starting with A006939(n).
A337256 counts chains of divisors.

Programs

  • Maple
    b:= proc(n) option remember; expand(x*(1 +
          add(b(d), d=numtheory[divisors](n) minus {n})))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=1..50);  # Alois P. Heinz, Aug 23 2020
  • Mathematica
    chss[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chss[d],{d,Most[Divisors[n]]}],{n}];
    Table[Length[Select[chss[n],Length[#]==k&]],{n,30},{k,1+PrimeOmega[n]}]
Showing 1-4 of 4 results.