cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A198586 a(n) = (4^A001651(n+1) - 1)/3: numbers (4^k-1)/3 for k > 1, not multiples of 3.

Original entry on oeis.org

5, 85, 341, 5461, 21845, 349525, 1398101, 22369621, 89478485, 1431655765, 5726623061, 91625968981, 366503875925, 5864062014805, 23456248059221, 375299968947541, 1501199875790165, 24019198012642645, 96076792050570581, 1537228672809129301
Offset: 1

Views

Author

T. D. Noe, Oct 30 2011

Keywords

Comments

Numbers coprime to 6 producing 2 odd numbers in the Collatz iteration.
Numbers appearing in A198585 (sorted and duplicates removed). These numbers occur in A002450, numbers of the form (4^k-1)/3, for k = 2, 4, 5, 7, 8, 10, ... (note that k a multiple of 3 does not appear).
A124477 \ {0,1} is a subset: for these n, 3n+1 = 2^(p-3) with p > 3 prime, whence also n !== 0 (mod 3). - M. F. Hasler, Oct 16 2018
These are exactly the odd non-multiples of 3 such 3n+1 = 2^m for some m, i.e., n = (2^m-1)/3. This is possible iff m = 2k, so we get n = (4^k-1)/3. Then n == 0 (mod 3) <=> 4^k == 1 (mod 9) <=> k == 0 (mod 3) <=> k not in A001651. This yields the FORMULA. (Multiples of 3 are excluded because the original definition implied that the terms are in the Collatz-orbit of another odd number, i.e., of the form n = (3x+1)/2^r, which is impossible for x a multiple of 3.) - M. F. Hasler, Oct 16 2018
From Wolfdieter Lang, Jan 14 2022: (Start)
a(n) mod 8 = 5. As subsequence of A002450 for n >= 1.
{a(n) mod 6} == repeat{5, 1}. See the first comment, and the periodicity modulo 6 of A002450 for n >= 1.
{a(n) mod 72} == repeat{5, 13, 53, 61, 29, 37}. Proof by induction: First with the bisection formulas, a(1+2*k) = (4^(2+3*k) - 1)/3 and a(2+2*k) = (4^(3*k+4) - 1)/3, for k >= 0, then trisection, using (4^9 - 1)/3 = 873819 = 9*9709. (End)

Crossrefs

Programs

  • Magma
    [4^(3*n  div 2 + 1) div 3: n in [1..25]]; // Vincenzo Librandi, Oct 20 2018
  • Mathematica
    e = 19; ex = Complement[Range[2,3*e], 3*Range[e]]; (4^ex - 1)/3
    (* Second program: *)
    Rest@ Map[(4^# - 1)/3 &, LinearRecurrence[{1, 1, -1}, {1, 2, 4}, 21]] (* Michael De Vlieger, Oct 17 2018 *)
  • PARI
    is(n)=gcd(n,6)==1&&(n=3*n+1)>>valuation(n,2)==1 \\ M. F. Hasler, Oct 16 2018
    
  • PARI
    A198586(n)=4^(3*n\2+1)\3 \\ M. F. Hasler, Oct 16 2018
    
  • PARI
    Vec(x*(5 + 80*x - 64*x^2) / ((1 - x)*(1 - 8*x)*(1 + 8*x)) + O(x^20)) \\ Colin Barker, Jan 17 2020
    

Formula

a(n) = (4^A001651(n+1) - 1)/3. - M. F. Hasler, Oct 16 2018
From Colin Barker, Jan 17 2020: (Start)
G.f.: x*(5 + 80*x - 64*x^2) / ((1 - x)*(1 - 8*x)*(1 + 8*x)).
a(n) = a(n-1) + 64*a(n-2) - 64*a(n-3) for n>3.
a(n) = (-1 + (-8)^n + 3*8^n) / 3.
(End)

Extensions

Definition corrected by M. F. Hasler, Oct 16 2018

A135659 a(n) = 24*n + 7.

Original entry on oeis.org

7, 31, 55, 79, 103, 127, 151, 175, 199, 223, 247, 271, 295, 319, 343, 367, 391, 415, 439, 463, 487, 511, 535, 559, 583, 607, 631, 655, 679, 703, 727, 751, 775, 799, 823, 847, 871, 895, 919, 943, 967, 991, 1015, 1039, 1063, 1087, 1111, 1135, 1159, 1183, 1207
Offset: 0

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Comments

Conjecture: All Mersenne Primes (A000668) > 3 are in this sequence.

Crossrefs

Programs

  • Mathematica
    Table[24n + 7, {n, 0, 100}]
    LinearRecurrence[{2,-1},{7,31},60] (* Harvey P. Dale, Jul 14 2013 *)

Formula

From Colin Barker, Apr 02 2012: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (7+17*x)/(1-x)^2. (End)
E.g.f.: (7 + 24*x)*exp(x). - G. C. Greubel, Oct 25 2016

Extensions

Offset changed to 0 by Omar E. Pol, Oct 25 2016

A135982 a(n) = 2^(24n+7)-1.

Original entry on oeis.org

127, 2147483647, 36028797018963967, 604462909807314587353087, 10141204801825835211973625643007, 170141183460469231731687303715884105727
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2^A135659(n) - 1.
G.f.: ( 127+16777088*x ) / ( (16777216*x-1)*(x-1) ). - R. J. Mathar, Apr 02 2012

A139480 a(n) = A000043(n) - 3.

Original entry on oeis.org

0, 2, 4, 10, 14, 16, 28, 58, 86, 104, 124, 518, 604, 1276, 2200, 2278, 3214, 4250, 4420, 9686, 9938, 11210, 19934, 21698, 23206, 44494, 86240, 110500, 132046, 216088, 756836, 859430, 1257784, 1398266, 2976218, 3021374, 6972590, 13466914, 20996008, 24036580, 25964948
Offset: 2

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Comments

2^a(n)-1 is divisible by 3. For (2^a(n)-1)/3 see A124477.
For a(n)/2 see A139481.

Crossrefs

Programs

  • Mathematica
    MersennePrimeExponent[Range[2, 48]] - 3 (* Amiram Eldar, Oct 17 2024 *)

Extensions

Definition corrected by Omar E. Pol, May 23 2008
Edited by N. J. A. Sloane, May 23 2008
a(40)-a(42) from Amiram Eldar, Oct 17 2024

A145044 Primes p (A000043) such that 2^p-1 is prime (A000668) and congruent to 271 mod 6!.

Original entry on oeis.org

13, 61, 2281, 3217, 23209, 44497, 132049, 13466917, 30402457, 42643801
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2008

Keywords

Comments

Mersenne numbers (with the exception of the first two) are congruent to 31, 127, 271, 607 mod 6!. This sequence is a subsequence of A000043.

Crossrefs

Programs

  • Mathematica
    Select[MersennePrimeExponent[Range[47]], PowerMod[2, #, 6!] == 272 &] (* Amiram Eldar, Mar 22 2020 *)

Extensions

a(10) from Amiram Eldar, Mar 22 2020

A145045 Primes p (A000043) such that 2^p-1 is prime (A000668) and congruent to 607 mod 6!

Original entry on oeis.org

107, 86243, 756839, 25964951, 37156667
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2008

Keywords

Comments

Mersenne numbers (with the exception of the first two) are congruent to 31, 127, 271, 607 mod 6!. This sequence is a subset of A000043.

Crossrefs

Programs

  • Mathematica
    p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 607, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a (*Artur Jasinski*)

Extensions

Comment rewritten by Harvey P. Dale, Sep 02 2023

A139481 a(n) = A139480(n)/2.

Original entry on oeis.org

0, 1, 2, 5, 7, 8, 14, 29, 43, 52, 62, 259, 302, 638, 1100, 1139, 1607, 2125, 2210, 4843, 4969, 5605, 9967, 10849, 11603, 22247, 43120, 55250, 66023, 108044, 378418, 429715, 628892, 699133, 1488109, 1510687, 3486295, 6733457, 10498004, 12018290
Offset: 2

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    (MersennePrimeExponent[Range[2, 48]] - 3)/2 (* Amiram Eldar, Oct 17 2024 *)

Formula

a(n) = A146768(n-1)-1. - R. J. Mathar, Mar 30 2011

Extensions

Edited by N. J. A. Sloane, May 23 2008

A121290 a(n) = (2^prime(n) - 8)/24 for n>=2.

Original entry on oeis.org

0, 1, 5, 85, 341, 5461, 21845, 349525, 22369621, 89478485, 5726623061, 91625968981, 366503875925, 5864062014805, 375299968947541, 24019198012642645, 96076792050570581, 6148914691236517205
Offset: 1

Views

Author

Lekraj Beedassy, Aug 24 2006

Keywords

Comments

Previous name was: (2^(p-3) - 1)/3, where p is an odd prime, i.e., p = A065091.

Crossrefs

Programs

  • Mathematica
    Table[(2^Prime[n] - 8)/24, {n, 2, 100}] (* Artur Jasinski *)

Extensions

New name from Joerg Arndt, Jul 21 2017

A135983 a(n)=2^A107006(n)-1.

Original entry on oeis.org

127, 2147483647, 604462909807314587353087, 10141204801825835211973625643007, 170141183460469231731687303715884105727, 2854495385411919762116571938898990272765493247
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

A107006(n) are successive primes of the form 24n+7.

Crossrefs

Programs

  • Mathematica
    p = Select[24*Range[0, 20] + 7, PrimeQ]; 2^p - 1

A139483 Numbers n such that 24n+7 is prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 9, 11, 15, 18, 19, 20, 25, 26, 30, 31, 34, 38, 40, 41, 43, 44, 45, 51, 53, 54, 55, 58, 59, 60, 61, 64, 65, 69, 73, 74, 76, 78, 81, 83, 89, 93, 95, 96, 99, 104, 106, 110, 111, 113, 115, 116, 120, 128, 136, 138, 139, 141, 144, 146, 148, 149, 150, 151
Offset: 1

Views

Author

Artur Jasinski, Apr 23 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[24 n + 7], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Range[0,200],PrimeQ[24#+7]&] (* Harvey P. Dale, Sep 02 2015 *)
  • PARI
    is(n)=isprime(24*n+7) \\ Charles R Greathouse IV, Jun 06 2017
Previous Showing 11-20 of 25 results. Next