A360202
Array read by antidiagonals: T(m,n) is the number of (non-null) induced trees in the grid graph P_m X P_n.
Original entry on oeis.org
1, 3, 3, 6, 12, 6, 10, 33, 33, 10, 15, 78, 138, 78, 15, 21, 171, 533, 533, 171, 21, 28, 360, 2003, 3568, 2003, 360, 28, 36, 741, 7453, 23686, 23686, 7453, 741, 36, 45, 1506, 27643, 156614, 277606, 156614, 27643, 1506, 45, 55, 3039, 102432, 1034875, 3234373, 3234373, 1034875, 102432, 3039, 55
Offset: 1
Array begins:
=============================================================
m\n| 1 2 3 4 5 6 7 ...
---+---------------------------------------------------------
1 | 1 3 6 10 15 21 28 ...
2 | 3 12 33 78 171 360 741 ...
3 | 6 33 138 533 2003 7453 27643 ...
4 | 10 78 533 3568 23686 156614 1034875 ...
5 | 15 171 2003 23686 277606 3234373 37643572 ...
6 | 21 360 7453 156614 3234373 66136452 1349087217 ...
7 | 28 741 27643 1034875 37643572 1349087217 48136454388 ...
...
A077802
Sum of products of parts increased by 1 in hook partitions of n, where hook partitions are of the form h*1^(n-h).
Original entry on oeis.org
1, 2, 7, 18, 41, 88, 183, 374, 757, 1524, 3059, 6130, 12273, 24560, 49135, 98286, 196589, 393196, 786411, 1572842, 3145705, 6291432, 12582887, 25165798, 50331621, 100663268, 201326563, 402653154, 805306337, 1610612704
Offset: 0
The hook partitions of 4 are 4, 3+1, 2+1+1, 1+1+1+1; the corresponding products when parts are increased by 1 are 5, 8, 12, 16; and their sum is a(4) = 41.
A307393
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 5, 1, 4, 16, 1, 4, 11, 42, 1, 4, 10, 26, 99, 1, 4, 10, 21, 57, 219, 1, 4, 10, 20, 42, 120, 466, 1, 4, 10, 20, 36, 84, 247, 968, 1, 4, 10, 20, 35, 64, 169, 502, 1981, 1, 4, 10, 20, 35, 57, 120, 340, 1013, 4017, 1, 4, 10, 20, 35, 56, 93, 240, 682, 2036, 8100
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
5, 4, 4, 4, 4, 4, 4, 4, ...
16, 11, 10, 10, 10, 10, 10, 10, ...
42, 26, 21, 20, 20, 20, 20, 20, ...
99, 57, 42, 36, 35, 35, 35, 35, ...
219, 120, 84, 64, 57, 56, 56, 56, ...
466, 247, 169, 120, 93, 85, 84, 84, ...
968, 502, 340, 240, 165, 130, 121, 120, ...
-
T[n_, k_] := Sum[Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A233295
Riordan array ((1+x)/(1-x)^3, 2*x/(1-x)).
Original entry on oeis.org
1, 4, 2, 9, 10, 4, 16, 28, 24, 8, 25, 60, 80, 56, 16, 36, 110, 200, 216, 128, 32, 49, 182, 420, 616, 560, 288, 64, 64, 280, 784, 1456, 1792, 1408, 640, 128, 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256, 100, 570, 2160, 5712, 10752, 14400, 13440, 8320, 3072, 512
Offset: 0
Triangle begins :
1
4, 2
9, 10, 4
16, 28, 24, 8
25, 60, 80, 56, 16
36, 110, 200, 216, 128, 32
49, 182, 420, 616, 560, 288, 64
64, 280, 784, 1456, 1792, 1408, 640, 128
81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
100, 570, 2160, 5712, 10752, 14400, 13440, 8320, 3072, 512
A355282
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 9, 4, 1, 0, 343, 79, 11, 1, 0, 50625, 6028, 454, 26, 1, 0, 28629151, 1741861, 68710, 2190, 57, 1, 0, 62523502209, 1926124954, 38986831, 656500, 9687, 120, 1, 0, 532875860165503, 8264638742599, 84816722571, 734873171, 5760757, 40929, 247, 1
Offset: 0
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
===============================================================================
0 : 1
1 : 0 1
2 : 0 1 1
3 : 0 9 4 1
4 : 0 343 79 11 1
5 : 0 50625 6028 454 26 1
6 : 0 28629151 1741861 68710 2190 57 1
7 : 0 62523502209 1926124954 38986831 656500 9687 120 1
8 : 0 532875860165503 8264638742599 84816722571 734873171 5760757 40929 247 1
etc.
-
# using qStirling2 from A333143.
A355282 := proc(n, k) if k = 0 then 0^n elif n = k then 1 else
add(A342186(n - k, i)*qStirling2(n + i - 2, n - 2, 2), i = 1..n-k) fi end:
seq(print(seq(A355282(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Jun 28 2022
-
mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n, k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])); ); ); m; \\ A139382
tabl(nn) = my(m=mat(3*nn), im=1/m); matrix(nn, nn, n, k, n--; k--; if (k==0, 0^n, kMichel Marcus, Jun 27 2022
A368506
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(j+k-1,j).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 11, 4, 0, 1, 8, 24, 26, 5, 0, 1, 10, 42, 82, 57, 6, 0, 1, 12, 65, 188, 261, 120, 7, 0, 1, 14, 93, 360, 787, 804, 247, 8, 0, 1, 16, 126, 614, 1870, 3204, 2440, 502, 9, 0, 1, 18, 164, 966, 3810, 9476, 12900, 7356, 1013, 10, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 3, 11, 24, 42, 65, 93, ...
0, 4, 26, 82, 188, 360, 614, ...
0, 5, 57, 261, 787, 1870, 3810, ...
0, 6, 120, 804, 3204, 9476, 23112, ...
0, 7, 247, 2440, 12900, 47590, 139134, ...
-
T(n, k) = sum(j=0, n, k^(n-j)*binomial(j+k-1, j));
Comments