cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A125946 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks at least one of digits 1,2, at least one of digits 3,4,5 and at least one of digits 6,7,8,9.

Original entry on oeis.org

10, 98, 940, 8798, 80140, 709238, 6096100, 50950718, 415060060, 3305238278, 25807024660, 198131841038, 1499550640780, 11213044626518, 82997777543620, 609099122145758, 4437879770746300, 32138240678881958, 231547934781860980, 1661033550903240878
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 04 2007

Keywords

Crossrefs

Cf. A125630.

Programs

  • Maple
    f:=n->24*7^n-72*6^n+98*5^n-76*4^n+35*3^n-9*2^n+1;
  • Mathematica
    Table[24*7^n-72*6^n+98*5^n-76*4^n+35*3^n-9*2^n+1,{n, 20}]  (* James C. McMahon, Dec 22 2024 *)
  • PARI
    vector(100, n, 24*7^n-72*6^n+98*5^n-76*4^n+35*3^n-9*2^n+1) \\ Colin Barker, Feb 23 2015

Formula

a(n) = 24*7^n-72*6^n+98*5^n-76*4^n+35*3^n-9*2^n+1.
G.f.: -2*x*(2520*x^6 -6042*x^5 +6043*x^4 -2783*x^3 +708*x^2 -91*x +5) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - Colin Barker, Feb 23 2015

A125910 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3,4 and at least one of digits 5,6,7,8,9.

Original entry on oeis.org

9, 81, 723, 6381, 55539, 475461, 3993243, 32857101, 264890019, 2094889941, 16282118763, 124625344221, 941303216499, 7029057066021, 51980086628283, 381227207181741, 2776407821318979, 20100192515299701, 144786930345697803, 1038495372200033661
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 04 2007

Keywords

Examples

			a(8) = 32857101.
		

Crossrefs

Cf. A125630.

Programs

  • Maple
    f:=n->15*7^n-45*6^n+65*5^n-55*4^n+28*3^n-8*2^n+1;
  • PARI
    Vec(-3*x*(1680*x^6 -3976*x^5 +3946*x^4 -1807*x^3 +451*x^2 -57*x+3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 15*7^n-45*6^n+65*5^n-55*4^n+28*3^n-8*2^n+1.
G.f.: -3*x*(1680*x^6 -3976*x^5 +3946*x^4 -1807*x^3 +451*x^2 -57*x+3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - Colin Barker, Feb 22 2015

A077220 a(1) = 1; thereafter a(n) is smallest number not occurring earlier such that a(n-1)+a(n) is a triangular number.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 3, 7, 8, 13, 15, 21, 24, 31, 5, 10, 11, 17, 19, 26, 29, 16, 20, 25, 30, 36, 42, 49, 56, 22, 14, 41, 37, 18, 27, 28, 38, 40, 51, 54, 66, 39, 52, 53, 67, 69, 84, 87, 33, 45, 46, 32, 23, 43, 35, 70, 50, 55, 65, 71, 34, 44, 47, 58, 62, 74, 79, 57, 48, 72, 64, 89
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2002

Keywords

Comments

Conjectured to be a permutation of the natural numbers (cf. A099130). The first few fixed points are: 1, 2, 19, 92, 220, 467, 556, 616, 690, 842.

Examples

			n=5: ss={1,2,4,6}; triangular numbers > 6 are 10,15,21; but 10-6=4 is in ss, hence a(5)=15-6=9;
n=6, ss={1,2,4,6,9}; triangular numbers > 9 are 10,15,21; but 10-9=4 and 15-9=6 are in ss, hence a(6)=21-9=12 etc.
		

Crossrefs

Programs

  • Mathematica
    tr=Table[n(n+1)/2, {n, 100}]; s={1}; a=1; Do[Do[tk=tr[[k]]; If[tk > a, b=tk-a; If[FreeQ[s, b], AppendTo[s, b]; a=b; Break[]]], {k, 100}], {99}]; s (* Zak Seidov, Jul 12 2010 *)
  • PARI
    v=[1]; n=1; while(n<100, if(ispolygonal(n+v[#v],3)&&!vecsearch(vecsort(v), n), v=concat(v, n); n=0); n++); v \\ Derek Orr, Jun 08 2015

Extensions

More terms from Reinhard Zumkeller, Sep 28 2004
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
Further edited by N. J. A. Sloane, Jul 11 2010, Jul 19 2010

A126644 a(n) = 3*3^n - 3*2^n + 1.

Original entry on oeis.org

4, 16, 58, 196, 634, 1996, 6178, 18916, 57514, 174076, 525298, 1582036, 4758394, 14299756, 42948418, 128943556, 387027274, 1161475036, 3485211538, 10457207476, 31374768154, 94130595916, 282404370658, 847238277796
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Comments

Previous name was: a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4,5,6 and at least one of digits 7,8,9.
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is a proper subset of y or y is a proper subset of x, 1) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 2) x equals y. Then a(n) = |R|. [Ross La Haye, Mar 19 2009]

Examples

			a(8) = 18916.
		

Crossrefs

Programs

  • Maple
    f:=n->3*3^n-3*2^n+1;
  • Mathematica
    LinearRecurrence[{6,-11,6},{4,16,58},30] (* Harvey P. Dale, Sep 14 2018 *)
  • PARI
    a(n) = 3*3^n - 3*2^n + 1; \\ Michel Marcus, Nov 30 2015

Formula

a(n) = 3*3^n - 3*2^n + 1.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). G.f.: -2*x*(3*x^2-4*x+2) / ((x-1)*(2*x-1)*(3*x-1)). [Colin Barker, Dec 10 2012]
a(n) = 3*A001047(n) + 1. - Hugo Pfoertner, Nov 22 2022

Extensions

New name from Hugo Pfoertner, Nov 22 2022

A126645 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3,4 and 5, at least one of digits 6,7 and at least one of digits 8,9.

Original entry on oeis.org

5, 21, 77, 261, 845, 2661, 8237, 25221, 76685, 232101, 700397, 2109381, 6344525, 19066341, 57264557, 171924741, 516036365, 1548633381, 4646948717, 13942943301, 41833024205, 125507461221, 376539160877, 1129651037061, 3389020220045, 10167194877861
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->4*3^n-4*2^n+1;
  • PARI
    Vec(-x*(6*x^2-9*x+5)/((x-1)*(2*x-1)*(3*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 4*3^n-4*2^n+1.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). - Colin Barker, Feb 22 2015
G.f.: -x*(6*x^2-9*x+5) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Feb 22 2015

A126627 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks digits 1,2,3 and at least one of digits 4,5,6,7,8,9.

Original entry on oeis.org

7, 49, 343, 2401, 16807, 116929, 803383, 5432161, 36120007, 236404609, 1525601623, 9726181921, 61371928807, 383929313089, 2384606035063, 14723095123681, 90457525939207, 553507860826369, 3375536272503703, 20528377102849441, 124556950506727207
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->6*6^n-15*5^n+20*4^n-15*3^n+6*2^n-1;
  • Mathematica
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{7,49,343,2401,16807,116929},30] (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    vector(100, n, 6*6^n-15*5^n+20*4^n-15*3^n+6*2^n-1) \\ Colin Barker, Feb 23 2015

Formula

a(n) = 6*6^n-15*5^n+20*4^n-15*3^n+6*2^n-1.
G.f.: -x*(720*x^5 -1764*x^4 +1372*x^3 -539*x^2 +98*x -7) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)). - Colin Barker, Feb 23 2015

A126628 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks digits 1 and 2, at least one of digits 3,4 and at least one of digits 5,6,7,8,9.

Original entry on oeis.org

8, 62, 470, 3506, 25718, 184682, 1294910, 8867186, 59423078, 390804602, 2529567950, 16157024066, 102070798838, 639011269322, 3970835898590, 24524390352146, 150705922308998, 922285972770842, 5624983337550830, 34210314230099426, 207580309651649558
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    f:=n->10*6^n-25*5^n+30*4^n-20*3^n+7*2^n-1;
  • Mathematica
    CoefficientList[Series[-2*(360*x^5 - 882*x^4 + 697*x^3 - 284*x^2 + 53*x - 4)/((x - 1)*(2*x - 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 22 2022 *)
  • PARI
    vector(100, n, 10*6^n-25*5^n+30*4^n-20*3^n+7*2^n-1) \\ Colin Barker, Feb 23 2015

Formula

a(n) = 10*6^n-25*5^n+30*4^n-20*3^n+7*2^n-1.
G.f.: -2*x*(360*x^5 -882*x^4 +697*x^3 -284*x^2 +53*x -4) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)). - Colin Barker, Feb 23 2015
a(n) = 21*a(n-1)-175*a(n-2)+735*a(n-3)-1624*a(n-4)+1764*a(n-5)-720*a(n-6). - Wesley Ivan Hurt, Jun 22 2022

A126631 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3, at least one of digits 4,5 and at least one of digits 6,7,8,9.

Original entry on oeis.org

9, 77, 633, 5021, 38409, 283277, 2019033, 13963901, 94144809, 621444077, 4031587833, 25787305181, 163054382409, 1021372934477, 6349128459033, 39222102764861, 241061530639209, 1475385002210477, 8998880800344633, 54732125638998941
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Examples

			a(8) = 13963901.
		

Crossrefs

Programs

  • Maple
    f:=n->16*6^n-40*5^n+44*4^n-26*3^n+8*2^n-1;
  • Mathematica
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{9,77,633,5021,38409,283277},30] (* Harvey P. Dale, Oct 14 2016 *)
  • PARI
    Vec(-x*(720*x^5-1764*x^4+1412*x^3-591*x^2+112*x-9)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 16*6^n-40*5^n+44*4^n-26*3^n+8*2^n-1.
G.f.: -x*(720*x^5-1764*x^4+1412*x^3-591*x^2+112*x-9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Feb 22 2015

A126632 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3, at least one of digits 4,5,6 and at least one of digits 7,8,9.

Original entry on oeis.org

9, 79, 669, 5431, 42189, 314119, 2251629, 15625591, 105563469, 697683559, 4529641389, 28986744151, 183339095949, 1148652643399, 7141191155949, 44118519949111, 271168742599629, 1659705919705639, 10123331198091309, 61571999920648471
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Examples

			a(8) = 15625591.
		

Crossrefs

Programs

  • Maple
    f:=n->18*6^n-45*5^n+48*4^n-27*3^n+8*2^n-1;
  • Mathematica
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{9, 79, 669, 5431, 42189, 314119},20] (* James C. McMahon, Dec 26 2024 *)
  • PARI
    Vec(-x*(720*x^5-1764*x^4+1408*x^3-585*x^2+110*x-9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015

Formula

a(n) = 18*6^n-45*5^n+48*4^n-27*3^n+8*2^n-1.
G.f.: -x*(720*x^5-1764*x^4+1408*x^3-585*x^2+110*x-9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Feb 22 2015

A126633 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks at least one of digits 1, 2, at least one of digits 3,4, at least one of digits 5,6 and at least one of digits 7,8,9.

Original entry on oeis.org

10, 94, 832, 6946, 54880, 412714, 2975752, 20722306, 140285200, 928323034, 6031661272, 38617025266, 244322679520, 1531014308554, 9519483716392, 58816232361826, 361524350929840, 2212804949145274, 13497228660885112
Offset: 1

Views

Author

Aleksandar M. Janjic and Milan Janjic, Feb 08 2007

Keywords

Crossrefs

Programs

  • Maple
    A126633:=n->24*6^n-60*5^n+62*4^n-33*3^n+9*2^n-1; seq(A126633(n), n=1..20);
  • Mathematica
    Table[24*6^n - 60*5^n + 62*4^n - 33*3^n + 9*2^n - 1, {n, 20}] (* Wesley Ivan Hurt, May 03 2014 *)
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{10,94,832,6946,54880,412714},30] (* Harvey P. Dale, May 05 2018 *)

Formula

a(n) = 24*6^n-60*5^n+62*4^n-33*3^n+9*2^n-1.
G.f.: -2*x*(360*x^5-882*x^4+713*x^3-304*x^2+58*x-5) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, May 04 2014
Previous Showing 11-20 of 30 results. Next