cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A124644 Triangle read by rows. T(n, k) = binomial(n, k) * CatalanNumber(n - k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1, 132, 252, 210, 100, 30, 6, 1, 429, 924, 882, 490, 175, 42, 7, 1, 1430, 3432, 3696, 2352, 980, 280, 56, 8, 1, 4862, 12870, 15444, 11088, 5292, 1764, 420, 72, 9, 1, 16796, 48620, 64350, 51480, 27720
Offset: 0

Views

Author

Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006

Keywords

Comments

Equal to A091867*A007318. - Philippe Deléham, Dec 12 2009
Exponential Riordan array [exp(2x)*(Bessel_I(0,2x)-Bessel_I(1,2x)),x]. - Paul Barry, Mar 03 2011
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = C[Pinv(x,t)] = {1 - sqrt[1 - 4 *x /(1-x*t)]}/2 where C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108 with inverse Cinv(x) = x*(1-x), and Pinv(x,t)= -P(-x,t) = x/(1-t*x) with inverse P(x,t) = 1/(1+t*x). This puts this array in a family of arrays formed from the composition of C and P and their inverses. -G(-x,t) is the comp. inverse of the o.g.f. of A030528.
This is an Appell sequence with lowering operator d/dt p(n,t) = n*p(n-1,t) and (p(.,t)+a)^n = p(n,t+a). The e.g.f. has the form e^(x*t)/w(t) where 1/w(t) is the e.g.f. of the first column, which is the Catalan sequence A000108. (End)

Examples

			From _Paul Barry_, Jan 28 2009: (Start)
Triangle begins
   1,
   1,  1,
   2,  2,  1,
   5,  6,  3,  1,
  14, 20, 12,  4,  1,
  42, 70, 50, 20,  5,  1 (End)
		

Crossrefs

Cf. A098474 (mirror image), A000108, A091867, A030528, A104597.
Row sums give A007317(n+1).

Programs

  • Maple
    m:=n->binomial(2*n, n)/(n+1): T:=proc(n, k) if k<=n then binomial(n, k)*m(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od;
  • Mathematica
    Table[Binomial[n, #] Binomial[2 #, #]/(# + 1) &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
    Table[Abs[(-1)^k*CatalanNumber[#] Pochhammer[-n, #]/#!] &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
  • Sage
    def A124644(n,k):
        return (-1)^(n-k)*catalan_number(n-k)*rising_factorial(-n,n-k)/factorial(n-k)
    for n in range(7): [A124644(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015

Formula

T(n,k) = [x^(n-k)]F(-n,n-k+1;1;-1-x). - Paul Barry, Sep 05 2008
G.f.: 1/(1-xy-x/(1-x/(1-xy-x/(1-x/(1-xy-x/(1-x.... (continued fraction). - Paul Barry, Jan 06 2009
G.f.: 1/(1-x-xy-x^2/(1-2x-xy-x^2/(1-2x-xy-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
T(n,k) = Sum_{i = 0..n} C(n,i)*(-1)^(n-i)*Sum{j = 0..i} C(j,k)*C(i,j)*A000108(i-j). - Paul Barry, Aug 03 2009
Sum_{k = 0..n} T(n,k)*x^k = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. T(n,k)= A007318(n,k)*A000108(n-k). - Philippe Deléham, Dec 12 2009
E.g.f.: exp(2*x + x*y)*(Bessel_I(0,2*x) - Bessel_I(1,2*x)). - Paul Barry, Mar 10 2010
From Tom Copeland, Nov 08 2014: (Start)
O.g.f.: G(x,t) = C[P(x,t)] = [1 - sqrt(1-4*x / (1-t*x))] / 2 = Sum_{n >= 1} (C. + t)^(n-1) * x^n] = x + (1 + t) x^2 + (2 + 2t + t^2) x^3 + ... umbrally, where (C.)^n = C_n = (1,1,2,5,8,...) = A000108(x), C(x)= x*A000108(x)= G(x,0), and P(x,t) = x/(1 + t*x), a special linear fractional (Mobius) transformation. P(x,-t)= -P(-x,t) is the inverse of P(x,t).
Inverse o.g.f.: Ginv(x,t) = P[Cinv(x),-t] = x*(1-x) / [1 - t*x(1-x)] = -A030528(-x,t), where Cinv(x) = x*(1-x) is the inverse of C(x).
G(x,t) = x*A091867(x,t+1), and Ginv(x,t) = x*A104597(x,-(t+1)). (End)
T(n, k) = (-1)^(n-k)*Catalan(n-k)*Pochhammer(-n,n-k)/(n-k)!. - Peter Luschny, Feb 05 2015
Recurrence: T(n, 0) = Catalan(n) = 1/(n+1)*binomial(2*n, n) and, for 1 <= k <= n, T(n, k) = (n/k) * T(n-1, k-1). - Peter Bala, Feb 04 2024

Extensions

Name brought in line with the Maple program by Peter Luschny, Jun 21 2023

A129174 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the sum of the peak-abscissae is k (0 <= k <= n^2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 5, 5, 7, 6, 9, 7, 9, 8, 9, 7, 9, 6, 7, 5, 5, 3, 4, 2, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Emeric Deutsch, Apr 20 2007

Keywords

Comments

Row n contains 1+n^2 entries. Row sums are the Catalan numbers (A000108). Column sums yield A129528. T(n,n+k) = T(n,n^2-k) (i.e., rows are palindromic). Alternating row sums are (-1)^n*binomial(n,floor(n/2)) = A126930(n). Sum_{k=0..n^2} k*T(n,k) = n*binomial(2n-1,n-1) = A002457(n-1). T(n,k) = A129175(n,n-k) (i.e., except for the initial 0's, rows of A129174 and A129175 are the same).

Examples

			T(5,11)=3 because we have (i) UDUDUUUDDD with peak-abscissae 1,3,7, (ii) UUUDDUUDD with peak-abscissae 3,8 and (iii) UUUUDDUDDD with peak-abscissae 4,7; here U=(1,1) and D=(1,-1).
Triangle starts:
  1;
  0,1;
  0,0,1,0,1;
  0,0,0,1,0,1,1,1,0,1;
  0,0,0,0,1,0,1,1,2,1,2,1,2,1,1,0,1;
  ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.

Crossrefs

Programs

  • Maple
    br:=n->sum(q^i,i=0..n-1): f:=n->product(br(j),j=1..n): cbr:=(n,k)->f(n)/f(k)/f(n-k): P:=n->sort(expand(simplify(q^n*cbr(2*n,n)/br(n+1)))): for n from 0 to 7 do seq(coeff(P(n),q,k),k=0..n^2) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
          expand(b(x-1, y+1, 1) +`if`(t=1, z^x, 1)*b(x-1, y-1, 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n^2))(b(2*n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, 1] + If[t == 1, z^x, 1]*b[x-1, y-1, 0]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, n^2}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)

Formula

The generating polynomial for row n is P[n](t) = t^n*binomial[2n,n]/[n+1], where [n+1]=1+t+t^2+...+t^n and binomial[2n,n] is a Gaussian polynomial (in t).

A210628 Expansion of (-1 + 2*x + sqrt( 1 - 4*x^2)) / (2*x) in powers of x.

Original entry on oeis.org

1, -1, 0, -1, 0, -2, 0, -5, 0, -14, 0, -42, 0, -132, 0, -429, 0, -1430, 0, -4862, 0, -16796, 0, -58786, 0, -208012, 0, -742900, 0, -2674440, 0, -9694845, 0, -35357670, 0, -129644790, 0, -477638700, 0, -1767263190, 0, -6564120420, 0, -24466267020, 0
Offset: 0

Views

Author

Michael Somos, Mar 25 2012

Keywords

Comments

Except for the leading term, the sequence is equal to -A097331(n). - Fung Lam, Mar 22 2014

Examples

			G.f. = 1 - x - x^3 - 2*x^5 - 5*x^7 - 14*x^9 - 42*x^11 - 132*x^13 - 429*x^15 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((-1 + 2*x + Sqrt(1-4*x^2))/(2*x))); // G. C. Greubel, Aug 11 2018
  • Mathematica
    CoefficientList[Series[1 - 2 x/(1 + Sqrt[1 - 4 x^2]), {x, 0, 45}], x] (* Bruno Berselli, Mar 25 2012 *)
    a[ n_] := SeriesCoefficient[ (-1 + 2 x + Sqrt[1 - 4 x^2]) / (2 x), {x, 0, n}];
  • Maxima
    makelist(coeff(taylor(1-2*x/(1+sqrt(1-4*x^2)), x, 0, n), x, n), n, 0, 45); /* Bruno Berselli, Mar 25 2012 */
    
  • PARI
    {a(n) = polcoeff( (-1 + 2*x + sqrt( 1 - 4*x^2 + x^2 * O(x^n))) / (2*x), n)};
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( -x / (1 + x^2) + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 - x - x * (1 - A)^2); polcoeff( A, n))};
    

Formula

G.f.: 1 - (2*x) / (1 + sqrt( 1 - 4*x^2)) = 1 - (1 - sqrt( 1 - 4*x^2)) / (2*x).
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = x*y^2 - (1 - 2*x) * (1 - y).
G.f. A(x) satisfies A( x / (1 + x^2) ) = 1 - x.
G.f. A(x) = 1 - x - x * (1 - A(x))^2 = 1 - 1/x + 1 / (1 - A(x)).
G.f. A(x) = 1 / (1 + x / (1 - 2*x + x * A(x))).
G.f. A(x) = 1 / (1 + x / (1 - x / (1 - x / (1 + x * A(x))))).
G.f. A(x) = 1 / (1 + x * A001405(x)). A126930(x) = 1 / (1 + x * A(x)).
G.f. A(x) = 1 - x / (1 - x^2 / (1 - x^2 / (1 - x^2 / ...))). - Michael Somos, Jan 02 2013
a(2*n) = 0 unless n=0, a(2*n + 1) = -A000108(n). a(n) = (-1)^n * A097331(n). a(n-1) = (-1)^floor(n/2) * A090192(n).
Convolution inverse of A210736. - Michael Somos, Jan 02 2013
G.f.: 2/( G(0) + 1), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1+2*x) - 2*x*(1+2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+2*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
D-finite with recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=1, a(1)=-1. - Fung Lam, Mar 17 2014
For nonzero odd-power terms, a(n) = -2^(n+1)/(n+1)^(3/2)/sqrt(2*Pi)*(1+3/(4*n) + O(1/n^2)). (with contribution of Vaclav Kotesovec) - Fung Lam, Mar 17 2014

A171509 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A126931.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 33, 29, 9, 1, 110, 126, 57, 12, 1, 366, 518, 306, 94, 15, 1, 1220, 2052, 1494, 600, 140, 18, 1, 4065, 7925, 6849, 3389, 1035, 195, 21, 1, 13550, 30030, 30025, 17628, 6635, 1638, 259, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to A053121*B^3, B = A007318.

Examples

			Triangle begins:
  1 ;
  3,1 ;
  10,6,1 ;
  33,29,9,1 ;
  110,126,57,12,1 ; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -4, -3, -2, -1, 0 respectively.
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-3)^i. - Philippe Deléham, Feb 23 2012
Previous Showing 11-14 of 14 results.