A128398 Numbers k such that k^2 divides 18^k - 1.
1, 17, 128583032925805678351
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Join[{1},Select[Range[3000],PowerMod[19,#,#^2]==1&]] (* Harvey P. Dale, Oct 24 2017 *)
for(k=1, 1e4, if(Mod(19, k^2)^k==1, print1(k", "))) \\ Seiichi Manyama, Mar 25 2020
for( n=1, 10^6, Mod(20,n^2)^n - 1 || print1(n",")) \\ M. F. Hasler, Oct 20 2008
Select[Range[11000],Divisible[16^#-1,#^2]&] (* Harvey P. Dale, Dec 14 2010 *) Join[{1},Select[Range[11000],PowerMod[16,#,#^2]==1&]] (* Harvey P. Dale, Mar 16 2022 *)
Select[Range[600],Divisible[17^#^2-1,#^3]&] (* Harvey P. Dale, Jul 19 2015 *)
is_A177917(n)=Mod(17,n^3)^(n^2)==1 \\ M. F. Hasler, Oct 21 2012
Select[Range[50000],Divisible[21^#-1,#^2]&] (* Harvey P. Dale, Jun 17 2011 *)
Join[{1},Select[Range[2000],PowerMod[23,#,#^2]==1&]] (* Harvey P. Dale, May 02 2015 *)
fQ[n_] := Mod[ PowerMod[12, n, n^2] - 1, n^2] == 0; k = 1; lst = {}; While[k < 100000001, If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 10; If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 2]; lst (* Robert G. Wilson v, Dec 19 2014 *)
a={1};For[n=1,n<200000,n++,If[PowerMod[15,n,n^2]==1, AppendTo[a, n]]]; a (* Stefan Steinerberger, Jun 10 2007 *) Join[{1},Select[Range[167000],PowerMod[15,#,#^2]==1&]] (* Harvey P. Dale, Sep 14 2020 *)
is(k) = Mod(15, k^2)^k == 1; \\ Amiram Eldar, May 21 2024
Comments