cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A181107 Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.

Original entry on oeis.org

1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1

Views

Author

Erdos Pal, Oct 03 2010

Keywords

Comments

The n-th row is {T(n,0),T(n,1),...,T(n,n-1)}.
Let m denote the prime power p^e.
T(m,0) = A020478(m) = (p^(e+1) + p^e-1)*p^(2*e-1).
T(m,1) = A000056(m) = (p^2-1)*p^(3*e-2).
T(prime(n),1) = A127917(n).
Sum_{k=1..n-1} T(n,k) = A005353(n).
T(n,1) = n*A007434(n) for n>=1 because A000056(n) = n*Jordan_Function_J_2(n).
T(2^n,1) = A083233(n) = A164640(2n) for n>=1. Proof: a(n):=T(2^n,1); a(1)=6, a(n)=8*a(n-1); A083233(1)=6 and A083233(n) is a geometric series with ratio 8 (because of its g.f.), too; A164640 = {b(1)=1, b(2)=6, b(n)=8*b(n-2)}.
T(2^n,0) = A165148(n) for n>=0, because 2*T(2^n,0) = (3*2^n-1)*4^n.
T(2^e,2) = A003951(e) for 2 <= e. Proof: T(2^e,2) = 9*8^(e-1) is a series with ratio 8 and initial term 72, as A003951(2...inf) is.
Working with consecutive powers of a prime p, we need a definition (0 <= i < e):
N(p^e,i):=#{k: 0 < k < p^e, gcd(k,p^e) = p^i} = (p-1)*p^(e-1-i). We say that these k's belong to i (respect to p^e). Note that N(p^e,0) = EulerPhi(p^e), and if 0 < k < p^e then gcd(k,p^e) = gcd(k,p^(e+1)). Let T(p^e,[i]) denote the common value of T(p^e,k)'s, where k's belong to i (q.v.PROGRAM); for example, T(p^e,[0]) = T(p^e,1). The number of the 2 X 2 matrices over Z(p^e), T(p^e,0) + Sum_{i=0..e-1} T(p^e,[i])*N(p^e,i) = p^(4e) will be useful.
On the hexagon property: Let prime p be given and let T(p^e,[0]), T(p^e,[1]), T(p^e,[2]), ..., T(p^e,[e-2]), T(p^e,[e-1]) form the e-th row of a Pascal-like triangle, e>=1. Let denote X(r,s) an element of the triangle and its value T(p^r,[s]). Let positive integers a and b given, so that the entries A(m-a,n-b), B(m-a,n), C(m,n+a), D(m+b,n+a), E(m+b,n), F(m,n-b) of the triangle form a hexagon spaced around T(p^m,[n]); if a=b=1 then they surround it. If A*C*E = B*D*F, then we say that the triangle T(.,.) has the "hexagon property". (In the case of binomial coefficients X(r,s) = COMB(r,s), the "hexagon property" holds (see [Gupta]) and moreover gcd(A,C,E) = gcd(B,D,F) (see [Hitotumatu & Sato]).)
Corollary 2.2 in [Brent & McKay] says that, for the d X d matrices over Z(p^e), (mutatis mutandis) T_d(p^e,0) = K*(1-P(d+e-1)/P(e-1)) and T_d(p^e,[i]) = K*(q^e)*((1-q^d)/(1-q))*P(d+i-1)/P(i), where q=1/p, K=(p^e)^(d^2), P(t) = Product_{j=1..t} (1-q^j), P(0):=1. (For the case d=2, we have T(p^e,[i]) = (p+1)*(p^(i+1)-1)*p^(3*e-i-2).) Due to [Brent & McKay], it can be simply proved that for d X d matrices the "hexagon property" is true. The formulation implies an obvious generalization: For the entries A(r,u), B(r,v), C(s,w), D(t,w), E(t,v), F(s,u) of the T_d(.,.)-triangle, a hexagon-like property A*C*E = B*D*F holds. This is false in general for the COMB(.,.)-triangle.
Another (rotated-hexagon-like) property: for the entries A(m-b1,n), B(m-a1,n+c2), C(m+a2,n+c2), D(m+b2,n), E(m+a2,n-c1), F(m-a1,n-c1) of the T_d(.,.)-triangle, the property A*C*E = B*D*F holds, if and only if 2*(a1 + a2) = b1 + b2. This is also in general false for COMB(.,.)-triangle.

Examples

			From _Andrew Howroyd_, Jul 16 2018: (Start)
Triangle begins:
    1;
   10,   6;
   33,  24,  24;
   88,  48,  72,  48;
  145, 120, 120, 120, 120;
  330, 144, 240, 198, 240, 144;
  385, 336, 336, 336, 336, 336, 336;
  736, 384, 576, 384, 672, 384, 576, 384;
  945, 648, 648, 864, 648, 648, 864, 648, 648;
  ... (End)
		

Crossrefs

Column k=0 is A020478.
Column k=1 is A000056.
Row sums are A005353.

Programs

  • Other
      (* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
    				
  • PARI
    S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
    T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
    for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018

Formula

T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
Sum_{k=1..n-1, gcd(k,n)=1} T(n,k) = A000252(n). - Andrew Howroyd, Jul 16 2018

Extensions

Terms a(24)-a(55) from b-file by Andrew Howroyd, Jul 16 2018

A141535 An eighth of the product of three integers surrounding the (n+1)-st prime, minus half of the product of the 3 numbers surrounding n+1.

Original entry on oeis.org

0, 3, 12, 105, 168, 444, 603, 1158, 2550, 3060, 5469, 7518, 8568, 11292, 16563, 23217, 25458, 34167, 40740, 43998, 56307, 65391, 81210, 106272, 120000, 126750, 142155, 149685, 166863, 241152
Offset: 1

Views

Author

Roger L. Bagula, Aug 12 2008

Keywords

Programs

  • Maple
    A127917 := proc(n) p := ithprime(n) ; (p-1)*p*(p+1) ; end: A027480 := proc(n) n*(n+1)*(n+2)/2 ; end: A := proc(n) A127917(n+1)/8-A027480(n) ; end: for n from 1 to 40 do printf("%d,",A(n)) ; od: # R. J. Mathar, Aug 20 2008
  • Mathematica
    a[n_] = (Prime[n + 1] - 1)*Prime[n + 1]*(Prime[n + 1] + 1)/8 - n*(n + 1)*(n + 2)/2; Table[a[n], {n, 1, 30}]
    f[n_]:=Module[{pr=Prime[n+1],n1=n+1},(pr(pr^2-1))/8-(n1(n1^2-1))/2]; Array[f,30] (* Harvey P. Dale, May 24 2012 *)

Formula

a(n) = A127917(n+1)/8-A027480(n) = {p(n+1)-1}*p(n+1)*{p(n+1)+1}/8-n(n+1)(n+2)/2.

Extensions

Edited by N. J. A. Sloane, Aug 23 2008

A270775 a(n) is the number of invertible 2 X 2 upper triangular matrices over Z_p where p = prime(n).

Original entry on oeis.org

2, 12, 80, 252, 1100, 1872, 4352, 6156, 11132, 22736, 27900, 47952, 65600, 75852, 99452, 143312, 198476, 219600, 291852, 347900, 378432, 480636, 558092, 689216, 893952, 1010000, 1071612, 1202252, 1271376, 1417472, 2016252, 2213900, 2533952, 2647116, 3263696
Offset: 1

Views

Author

Tom Edgar, Mar 22 2016

Keywords

Comments

a(n) divides A244509(n).

Examples

			Over Z_2, there are only two invertible upper triangular 2 X 2 matrices: [[1,0],[0,1]] and [[1,1],[0,1]] so a(1) = 2.
		

Crossrefs

Programs

  • Sage
    [nth_prime(p)*(nth_prime(p)-1)^2 for p in [1..35]]

Formula

a(n) = p*(p-1)^2 where p = prime(n).
Sum 1/a(n) = A382552. - R. J. Mathar, Mar 31 2025

A262354 a(n) is the number of 2 X 2 matrices over Z_p with determinant in {1,-1} where p = prime(n).

Original entry on oeis.org

6, 48, 240, 672, 2640, 4368, 9792, 13680, 24288, 48720, 59520, 101232, 137760, 158928, 207552, 297648, 410640, 453840, 601392, 715680, 777888, 985920, 1143408, 1409760, 1825152, 2060400, 2185248, 2449872, 2589840, 2885568, 4096512, 4495920, 5142432, 5370960
Offset: 1

Views

Author

Tom Edgar, Mar 24 2016

Keywords

Comments

a(n) divides A244509(n).
For n>2 (i.e. p=prime(n)>=5), a(n) gives the order of the largest proper subgroup of GL(2,Z_p).

Crossrefs

Programs

  • Mathematica
    Prepend[2 Table[(Prime@ n + 1) Prime@ n (Prime@ n - 1), {n, 2, 34}], 6] (* Michael De Vlieger, Mar 24 2016, after Artur Jasinski at A127917 *)
  • PARI
    lista(nn) = {print1(6, ", "); forprime(p=3, nn, print1(2*p*(p^2-1), ", ")); } \\ Altug Alkan, Mar 24 2016
  • Sage
    [6] + [2*p*(p^2-1) for p in prime_range(3,150)]
    

Formula

For n>1, a(n) = 2*p*(p^2-1) where p = prime(n).
For n>1, a(n) = 2*A127917(n).
Previous Showing 11-14 of 14 results.