cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A358104 Unreduced numerator of the n-th divisible pair, where pairs are ordered by Heinz number. Greater prime index of A318990(n).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 5, 3, 6, 7, 8, 6, 9, 4, 8, 10, 11, 6, 12, 13, 14, 10, 15, 16, 12, 9, 17, 5, 18, 14, 8, 19, 20, 21, 22, 16, 23, 6, 24, 18, 12, 25, 26, 27, 20, 28, 29, 30, 15, 22, 31, 12, 32, 24, 33, 34, 7, 35, 36, 26, 18, 37, 10, 28, 38, 39, 30, 40, 41, 8, 42
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The 12th divisible pair is (2,6) so a(12) = 6.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
For all semiprimes we have A338913.
The quotient of the pair is A358103.
The denominator is A358105.
The reduced version for all semiprimes is A358192, denominator A358193.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A318991 ranks divisor-chains.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Cases[primeMS[n],{x_,y_}/;Divisible[y,x]:>y,{0}],{n,1000}]

Formula

A358103(n) = a(n)/A358105(n).

A358105 Unreduced denominator of the n-th divisible pair, where pairs are ordered by Heinz number. Lesser prime index of A318990(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 4, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 5, 1, 2, 4, 1, 1, 1, 1, 2, 1, 6, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 4, 1, 2, 1, 1, 7, 1, 1, 2, 3, 1, 5, 2, 1, 1, 2, 1, 1, 8, 1, 3, 4, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The 12th divisible pair is (2,6) so a(12) = 2.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
For all semiprimes we have A338912, greater A338913.
The quotient of the pair is A358103.
The reduced version for all semiprimes is A358193, numerator A358192.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A318991 ranks divisor-chains.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Cases[primeMS[n],{x_,y_}/;Divisible[y,x]:>x,{0}],{n,1000}]

Formula

A358103(n) = A358104(n)/a(n).

A358192 Numerator of the quotient of the prime indices of the n-th semiprime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 4, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 2, 1, 5, 3, 1, 3, 1, 1, 4, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 3, 1, 5, 1, 1, 3, 4, 1, 2, 6, 1, 1, 1, 3, 2, 5, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 31st semiprime has prime indices (4,6), so the quotient is 4/6 = 2/3; hence a(31) = 2.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
The unreduced pair is (A338912, A338913).
The quotients of divisible pairs are A358103.
The restriction to divisible pairs is A358104, denominator A358105.
The denominator is A358193.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Numerator/@Divide@@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]

A358193 Denominator of the quotient of the prime indices of the n-th semiprime.

Original entry on oeis.org

1, 2, 1, 3, 4, 3, 2, 5, 1, 6, 5, 7, 4, 8, 3, 9, 1, 7, 5, 4, 10, 11, 2, 9, 12, 5, 13, 7, 14, 5, 3, 11, 15, 8, 16, 6, 3, 17, 7, 1, 18, 13, 7, 2, 19, 15, 20, 6, 10, 21, 11, 22, 8, 9, 23, 1, 17, 24, 9, 4, 7, 25, 19, 26, 5, 13, 27, 8, 10, 28, 14, 11, 29, 21, 7, 30
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 31-st semiprime has prime indices (4,6), so the quotient is 4/6 = 2/3; hence a(31) = 3.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
The unreduced pair is (A338912, A338913).
The quotients of divisible pairs are A358103.
The restriction to divisible pairs is A358105, numerator A358104.
The numerator is A358192.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Denominator/@Divide@@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]

A128302 The indices of cubes (of primes) in the 3-almost primes.

Original entry on oeis.org

1, 5, 30, 82, 328, 551, 1243, 1763, 3112, 6276, 7619, 12972, 17615, 20322, 26514, 37977, 52220, 57703, 76200, 90701, 98470, 124541, 144229, 177395, 229275, 258410, 273908, 306750, 324149, 360724, 510225, 559384, 638657, 666743, 819645, 852588
Offset: 1

Views

Author

Rick L. Shepherd, Feb 25 2007

Keywords

Comments

the primepi function might be used to find terms. But it is expensive for larger numbers so then one might use A335331 to ease finding primepi(m) for larger m. - David A. Corneth, Apr 13 2025

Examples

			a(4) = 82 as 343 = 7^3 = prime(4)^3, the fourth cube in the 3-almost primes, is the eighty-second 3-almost prime.
		

Crossrefs

Programs

  • Mathematica
    Position[Select[Range[10^6], PrimeOmega[#] == 3 &], ?(PrimeNu[#] == 1 &)] // Flatten (* _Amiram Eldar, Apr 13 2025 *)
  • PARI
    list(lim) = {my(f, c); for(k = 1, lim, f = factor(k); if(bigomega(f) == 3, c++; if(omega(f) == 1, print1(c, ", "))));} \\ Amiram Eldar, Apr 13 2025
    
  • PARI
    \\ See Corneth link

Formula

A014612(a(n)) = A030078(n) = A000040(n)^3.

A131188 Indices of products of twin primes in the semiprimes.

Original entry on oeis.org

6, 13, 48, 103, 270, 508, 1001, 1413, 2724, 3052, 4859, 5668, 8029, 9062, 9608, 12558, 13828, 17319, 18823, 22781, 28077, 40162, 42359, 48113, 60703, 71793, 79161, 83792, 90129, 94954, 140436, 144445, 146452, 156704, 165199, 218110, 223095
Offset: 1

Views

Author

Zak Seidov, Sep 25 2007

Keywords

Examples

			Ignoring (2, 3), the first twin prime pair is (3, 5). We have 3 * 5 = 15, which is the sixth semiprime (the previous five semiprimes being 4, 6, 9, 10, 14). Hence 6 is the first term of this sequence.
The second twin prime pair is (5, 7). Then 5 * 7 = 35, which is the thirteenth semiprime (following 21, 22, 25, 26, 33, 34). Hence 13 is the second term of this sequence.
		

Crossrefs

Cf. A128301.

Programs

  • Maple
    N:= 10^7: # to use semiprimes <= N
    P:= select(isprime, [2,seq(i,i=3..N/2,2)]):
    count:= 0:
    for i from 1 to numtheory:-pi(floor(sqrt(N))) do
      for j from i to nops(P) while P[i]*P[j] <= N do
        count:= count+1;
        S[count]:= [P[i]*P[j],evalb(P[j]-P[i]=2)]
    od od:
    S:= sort(convert(S,list),(a,b) -> a[1] S[t][2],[$1..nops(S)]); # Robert Israel, Dec 30 2015
  • Mathematica
    s = Select[Range[10^6], PrimeOmega@ # == 2 &]; Map[Position[s, #] &, # (# + 2) &@ Select[Prime@ Range@ 160, NextPrime@ # - # == 2 &]] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
    Module[{upto=2*10^6,sp,tp},sp=Select[Range[upto],PrimeOmega[#]==2&]; tp= Times@@@Select[Partition[Prime[Range[upto/2]],2,1],#[[2]]-#[[1]] == 2&]; Table[Position[sp,n],{n,tp}]]//Flatten (* Harvey P. Dale, Nov 03 2016 *)

Formula

{i: A001358(i) = A001359(k) * A006512(k), for some k > 0}. - R. J. Mathar, Oct 26 2007

Extensions

More terms from R. J. Mathar, Oct 26 2007

A283235 Triangle read by rows: n-th row gives the numbers of primes p such that p*prime(k) <= prime(n)^2, k=1..n.

Original entry on oeis.org

1, 2, 2, 5, 4, 3, 9, 6, 4, 4, 17, 12, 9, 7, 5, 23, 16, 11, 9, 6, 6, 34, 24, 16, 13, 9, 8, 7, 41, 30, 20, 15, 11, 9, 8, 8, 56, 40, 27, 21, 15, 12, 11, 9, 9, 81, 59, 39, 30, 21, 18, 15, 14, 11, 10
Offset: 1

Views

Author

Zak Seidov, Mar 03 2017

Keywords

Comments

Sequence is related to A128301 = indices of squares (of primes) in the semiprimes.

Examples

			Triangle begins:
   1;
   2,  2;
   5,  4,  3;
   9,  6,  4,  4;
  17, 12,  9,  7,  5;
  23, 16, 11,  9,  6,  6;
  34, 24, 16, 13,  9,  8,  7;
  41, 30, 20, 15, 11,  9,  8,  8;
  56, 40, 27, 21, 15, 12, 11,  9,  9;
  81, 59, 39, 30, 21, 18, 15, 14, 11, 10;
  ...
		

Crossrefs

Cf. A128301, A348836 (1st column).

Programs

  • Mathematica
    Table[PrimePi[Prime[n]^2/Prime[k]],{n,10},{k,n}]//Flatten
  • PARI
    row(n) = my(p=prime(n)); vector(n, k, primepi(p^2/prime(k))); \\ Michel Marcus, Nov 01 2021

A289053 Array T(i,k) read by antidiagonals: position of prime(i)*prime(k) in A001358.

Original entry on oeis.org

1, 3, 2, 9, 6, 4, 17, 13, 7, 5, 40, 26, 19, 11, 8, 56, 48, 31, 23, 15, 10, 90, 75, 61, 39, 28, 18, 12, 114, 103, 79, 68, 44, 34, 20, 14, 164, 135, 122, 94, 81, 54, 37, 24, 16, 253, 199, 172, 152, 118, 101, 65, 49, 30, 21
Offset: 1

Views

Author

Zak Seidov, Jun 23 2017

Keywords

Examples

			Array begins:
    1      2      4      5      8     10    12    14    16    21
    3      6      7     11     15     18    20    24    30
    9     13     19     23     28     34    37    49
   17     26     31     39     44     54    65
   40     48     61     68     81    101
   56     75     79     94    118
   90    103    122    152
  114    135    172
  164    199
  253
		

Crossrefs

Cf. A000040, A001358, A115392 (1st row), A128301 (1st column).

Programs

  • Mathematica
    With[{nn = 11}, Function[s, Table[Position[s, Prime[i] Prime[k]][[1, 1]], {i, nn}, {k, i, 1, -1}] // Flatten]@ Select[Range[Prime[nn]^2], PrimeOmega@ # == 2 &]] (* Michael De Vlieger, Jun 23 2017 *)

A376479 Array read by antidiagonals: T(n,k) is the index of prime(k)^n in the numbers with n prime factors, counted with multiplicity.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 9, 5, 1, 5, 17, 30, 8, 1, 6, 40, 82, 90, 14, 1, 7, 56, 328, 385, 269, 23, 1, 8, 90, 551, 2556, 1688, 788, 39, 1, 9, 114, 1243, 5138, 18452, 7089, 2249, 64, 1, 10, 164, 1763, 15590, 44329, 126096, 28893, 6340, 103, 1, 11, 253, 3112, 24646, 179313, 361249, 827901, 115180, 17526
Offset: 1

Views

Author

Robert Israel, Sep 24 2024

Keywords

Comments

T(n,k) is the number of numbers j with n prime factors, counted with multiplicity, such that j <= prime(k)^n.

Examples

			T(2,3) = 9 because the third prime is 5 and 5^2 = 25 is the 9th semiprime.
		

Crossrefs

Cf. A001222, A078843 (second column), A078844 (third column), A078845 (fourth column), A078846 (fifth column), A128301 (second row), A128302 (third row), A128304 (fourth row).

Programs

  • Maple
    T:= Matrix(12,12):
    with(priqueue);
    for m from 1 to 12 do
      initialize(pq);
      insert([-2^m, [2$m]],pq);
      k:= 0:
      for count from 1 do
        t:= extract(pq);
        w:= t[2];
        if nops(convert(w,set))=1 then
          k:= k+1;
          T[m,k]:= count;
          if m+k = 13 then break fi;
        fi;
        p:= nextprime(w[-1]);
        for i from m to 1 by -1 while w[i] = w[m] do
          insert([t[1]*(p/w[-1])^(m+1-i),[op(w[1..i-1]),p$(m+1-i)]],pq);
    od od od:
    seq(seq(T[i,s-i],i=1..s-1),s=2..13)
Previous Showing 11-19 of 19 results.