cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A128402 Numbers k such that k^2 divides 22^k-1.

Original entry on oeis.org

1, 3, 7, 21, 39, 273, 507, 3081, 3549, 21567, 40053, 78117, 280371, 343239, 546819, 1015521, 2056899, 2402673, 5998317, 6171243, 7108647, 8740173, 12338859, 14398293, 18988203, 27115881, 41988219, 43198701, 47727771, 55431363
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Maple
    select(t -> 22 &^ t - 1 mod t^2 = 0, [seq(2*k+1,k=0..10^6)]); # Robert Israel, Jan 23 2015
  • Mathematica
    a={}; Do[r=(22^n-1)/n^2; If[r==IntegerPart[r], AppendTo[a, n]], {n, 1, 10^3}]; a (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
  • PARI
    { forstep(m=11,10^8,2, if( Mod(22,m^2)^m==1, print(m) ) ) } \\ Max Alekseyev, Oct 18 2008

Extensions

a(14)-a(30) from Max Alekseyev, Oct 18 2008

A128404 Numbers k such that k^2 divides 24^k-1.

Original entry on oeis.org

1, 23, 1081, 2870377, 7009273, 15954479, 134907719, 329435831, 537539141, 15001987199, 874750261127, 1991103024721, 4272172921319, 4862143429729, 7933540182019, 12816504745411, 41113262272969, 67084347257659
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

23 divides all terms except the first.

Crossrefs

Programs

Extensions

a(5)-a(6) from Farideh Firoozbakht, Mar 05 2007
a(7)-a(10) from Ryan Propper, Feb 23 2008
Terms a(11) onward from Max Alekseyev, May 06 2010

A177918 Numbers k such that k^3 divides 18^(k^2) - 1.

Original entry on oeis.org

1, 17, 343927, 1414961, 28626075991, 610559655569, 5417488064959
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Comments

17 divides a(n) for n > 1.

Crossrefs

Cf. A128358 (k divides 18^k - 1), A128398 (k^2 divides 18^k - 1).

Programs

  • Mathematica
    Select[Range[350000], Mod[PowerMod[18, #^2, #^3] - 1, #^3] == 0 &] (* Julien Kluge, Sep 20 2016 *)

Extensions

Three more terms from Max Alekseyev, Oct 02 2010

A128456 Quotients A128452(p+1)/p for prime p = A000040(n).

Original entry on oeis.org

2, 7, 311, 127, 23, 157, 7563707819165039903, 75368484119, 47, 9629, 311, 25679, 821, 758771382833029, 12409, 71233, 18438666190697, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843
Offset: 1

Views

Author

Alexander Adamchuk, Mar 05 2007, Mar 09 2007

Keywords

Comments

a(n) coincides with A128357(n) from n = 2 up to n = 6.

Crossrefs

Formula

a(n) = A128452(A000040(n)+1)/A000040(n).
a(n) = A020639(((p+1)^p - 1)/p^2), i.e., the smallest prime factor of ((p+1)^p - 1)/p^2, where p = A000040(n).

Extensions

Terms a(14) onward from Max Alekseyev, May 05 2010

A127837 Numbers k such that ((k+1)^k-1)/k^2 is a prime.

Original entry on oeis.org

2, 3, 5, 17, 4357
Offset: 1

Views

Author

Keywords

Comments

All terms are primes. Corresponding primes of the form ((k+1)^k-1)/k^2 are listed in A128466 = 2, 7, 311, 7563707819165039903, ... .
It seems that if p is in the sequence then the first three numbers k such that k^2 divides (p+1)^k-1 are: 1, p & ((p+1)^p-1)/p. 2 is in the sequence and the first three terms of A127103 are : 1, 2 & ((2+1)^2-1)/2; 3 is in the sequence and the first three terms of A127104 are : 1, 3 & ((3+1)^3-1)/3; 5 is in the sequence and the first three terms of A127106 are : 1, 5 & ((5+1)^5-1)/5.
No other terms below 20000. - Max Alekseyev, Apr 25 2007

Examples

			4357 is in the sequence because (4358^4357-1)/4357^2 is prime.
		

Crossrefs

A128452 Least number k > n such that k^2 divides n^k - 1.

Original entry on oeis.org

4, 21, 6, 1555, 8, 889, 10, 111, 12, 253, 14, 2041, 16, 21, 18, 128583032925805678351, 20, 1432001198261, 22, 39, 24, 1081, 26, 55, 28, 171, 30, 279241, 32, 9641, 34, 1191, 36, 55, 38, 950123, 40, 1641, 42, 33661, 44, 32627169461820247, 46, 63, 48, 583223, 50
Offset: 3

Views

Author

Alexander Adamchuk, Mar 05 2007, Mar 09 2007

Keywords

Comments

For prime p, p divides a(p+1). Quotients a(p+1)/p for prime p = A000040(n) are listed in A128456(n) which coincides with A128357(n) for n from 2 to 6.
a(n) divides n^(n-1) - 1.

Crossrefs

Formula

a(2n-1) = 2n.

Extensions

More terms from Alexander Adamchuk, Mar 09 2007
Terms a(22) onward from Max Alekseyev, May 05 2010

A333500 A(n,k) is the n-th number m such that m^2 divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 21, 20, 0, 6, 1, 5, 4, 903, 220, 0, 7, 1, 2, 1555, 6, 2667, 1220, 0, 8, 1, 7, 3, 9673655, 12, 7077, 2420, 0, 9, 1, 2, 889, 4, 187159211791705, 42, 113799, 5060, 0, 10, 1, 3, 4, 2359, 6, 776119592182705, 52, 114681, 13420, 0, 11
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,    1,  1,               1, ...
  2, 0,    2,    3,  2,               5, ...
  3, 0,    4,   21,  4,            1555, ...
  4, 0,   20,  903,  6,         9673655, ...
  5, 0,  220, 2667, 12, 187159211791705, ...
  6, 0, 1220, 7077, 42, 776119592182705, ...
		

Crossrefs

Previous Showing 11-17 of 17 results.