A383091
Numbers whose prime indices have at most one permutation with all equal run-lengths.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with just one permutation with all equal run-lengths (1,1,2,2,1,1), so 144 is in the sequence.
The prime indices of 240 are {1,1,1,1,2,3}, which have no permutation with all equal run-lengths, so 240 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
23: {9}
24: {1,1,1,2}
The complement for run-sums instead of lengths is
A383015, counted by
A383097.
A047966 counts partitions with equal run-lengths, compositions
A329738.
Cf.
A000720,
A000961,
A001221,
A001222,
A048767,
A351294,
A353744,
A353833,
A381435,
A382771,
A382877,
A383113.
A383532
Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct nonzero 0-appended differences (conjugate Wilf).
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 49, 50, 52, 53, 56, 59, 61, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121, 124, 125
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
23: {9}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
29: {10}
31: {11}
32: {1,1,1,1,1}
Partitions of this type are counted by
A383507.
A122111 represents conjugation in terms of Heinz numbers.
A325324 counts integer partitions with distinct 0-appended differences, ranks
A325367.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks
A383712.
Cf.
A001223,
A047966,
A181819,
A238745,
A320348,
A325325,
A325349,
A325366,
A325368,
A325388,
A383506.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
paug[y_]:=-DeleteCases[Differences[Append[y,0]],0];
Select[Range[100], UnsameQ@@Last/@FactorInteger[#] && UnsameQ@@paug[Reverse[prix[#]]]&]
A383507
Number of Wilf and conjugate Wilf integer partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 20, 27, 30, 31, 40, 50, 56, 68, 76, 86, 112, 126, 139, 170, 197, 216, 251, 297, 317, 378, 411, 466, 521, 607, 621, 745, 791, 892, 975, 1123, 1163, 1366, 1439, 1635, 1757, 2021, 2080, 2464, 2599, 2882, 3116, 3572, 3713
Offset: 0
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(1111) (11111) (222) (331) (332)
(411) (511) (611)
(3111) (4111) (2222)
(111111) (31111) (5111)
(1111111) (41111)
(311111)
(11111111)
A325349 counts partitions with distinct augmented differences, ranks
A325366.
A383709 counts Wilf partitions with distinct 0-appended differences.
Cf.
A047966,
A048767,
A111133,
A320348,
A325324,
A325325,
A325367,
A325368,
A325388,
A351294,
A383506.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#] && UnsameQ@@DeleteCases[Differences[Append[#,0]],0]&]],{n,0,30}]
A383514
Heinz numbers of non Wilf section-sum partitions.
Original entry on oeis.org
10, 14, 15, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 130, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 170, 177, 178, 182, 183, 185, 187, 190
Offset: 1
The terms together with their prime indices begin:
10: {1,3} 57: {2,8} 94: {1,15}
14: {1,4} 58: {1,10} 95: {3,8}
15: {2,3} 62: {1,11} 100: {1,1,3,3}
22: {1,5} 65: {3,6} 106: {1,16}
26: {1,6} 69: {2,9} 111: {2,12}
33: {2,5} 74: {1,12} 115: {3,9}
34: {1,7} 77: {4,5} 118: {1,17}
35: {3,4} 82: {1,13} 119: {4,7}
38: {1,8} 85: {3,7} 122: {1,18}
39: {2,6} 86: {1,14} 123: {2,13}
46: {1,9} 87: {2,10} 129: {2,14}
51: {2,7} 91: {4,6} 130: {1,3,6}
55: {3,5} 93: {2,11} 133: {4,8}
Ranking sequences are shown in parentheses below.
These partitions are counted by
A383506.
A122111 represents conjugation in terms of Heinz numbers.
A381431 is the section-sum transform.
A383508 counts partitions that are both Look-and-Say and section-sum (
A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (
A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (
A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (
A383517).
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],disjointFamilies[conj[prix[#]]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]
A383519
Number of section-sum partitions of n that have all distinct multiplicities (Wilf).
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 21, 27, 30, 33, 41, 50, 57, 68, 79, 89, 112, 126, 144, 172, 198, 220, 257, 298, 327, 383, 423, 477, 533, 621, 650, 760, 816, 920, 1013
Offset: 0
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(1111) (11111) (222) (331) (332)
(411) (511) (611)
(3111) (4111) (2222)
(111111) (31111) (5111)
(1111111) (41111)
(311111)
(11111111)
Ranking sequences are shown in parentheses below.
These partitions are ranked by (
A383520).
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],disjointFamilies[conj[#]]!={}&&UnsameQ@@Length/@Split[#]&]],{n,0,15}]
A383712
Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct 0-appended differences.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 20, 23, 25, 28, 29, 31, 37, 41, 43, 44, 45, 47, 49, 50, 52, 53, 59, 61, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 121, 124, 127, 131, 137, 139, 148, 149, 151, 153, 157, 163, 164
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
20: {1,1,3}
23: {9}
25: {3,3}
28: {1,1,4}
29: {10}
31: {11}
37: {12}
41: {13}
43: {14}
44: {1,1,5}
45: {2,2,3}
47: {15}
49: {4,4}
50: {1,3,3}
For just distinct 0-appended differences we have
A325367, counted by
A325324.
These partitions are counted by
A383709.
A122111 represents conjugation in terms of Heinz numbers.
A383507 counts partitions that are Wilf and conjugate Wilf, ranks
A383532.
A383530 counts partitions that are not Wilf or conjugate-Wilf, ranks
A383531.
Cf.
A000720,
A005117,
A047966,
A238745,
A320348,
A325325,
A325349,
A325355,
A325366,
A325368,
A325388,
A383506.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],UnsameQ@@Length/@Split[prix[#]] && UnsameQ@@Differences[Append[Reverse[prix[#]],0]]&]
A136567
a(n) is the number of exponents occurring only once each in the prime factorization of n.
Original entry on oeis.org
0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 2, 0, 0, 0, 2, 1, 2, 2, 0, 1, 0, 1, 2, 0
Offset: 1
4200 = 2^3 * 3^1 * 5^2 * 7^1. The exponents of the prime factorization are therefore 3,1,2,1. The exponents occurring exactly once are 2 and 3. So a(4200) = 2.
-
f[n_] := Block[{fi = Sort[Last /@ FactorInteger@n]}, Count[ Count[fi, # ] & /@ Union@fi, 1]]; f[1] = 0; Array[f, 105] (* Robert G. Wilson v, Jan 20 2008 *)
Table[Boole[n != 1] Count[Split@ Sort[FactorInteger[n][[All, -1]]], ?(Length@ # == 1 &)], {n, 105}] (* _Michael De Vlieger, Jul 24 2017 *)
-
A136567(n) = { my(exps=(factor(n)[, 2]), m=prod(i=1, length(exps), prime(exps[i])), f=factor(m)[, 2]); sum(i=1, #f, f[i]==1); }; \\ Antti Karttunen, Jul 24 2017
-
(define (A136567 n) (A056169 (A181819 n))) ;; Antti Karttunen, Jul 24 2017
A336867
Numbers k such that k! does not have distinct prime multiplicities.
Original entry on oeis.org
3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1
The sequence of indexed factorials a(n)! together with their prime signatures begins:
6: (1,1)
120: (3,1,1)
5040: (4,2,1,1)
40320: (7,2,1,1)
362880: (7,4,1,1)
39916800: (8,4,2,1,1)
479001600: (10,5,2,1,1)
6227020800: (10,5,2,1,1,1)
87178291200: (11,5,2,2,1,1)
1307674368000: (11,6,3,2,1,1)
20922789888000: (15,6,3,2,1,1)
355687428096000: (15,6,3,2,1,1,1)
6402373705728000: (16,8,3,2,1,1,1)
121645100408832000: (16,8,3,2,1,1,1,1)
2432902008176640000: (18,8,4,2,1,1,1,1)
A130092 is the generalization to non-factorials.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor of n with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.
A336866 counts partitions without distinct multiplicities.
Factorial numbers:
A000142,
A007489,
A022559,
A027423,
A048656,
A048742,
A071626,
A325272,
A325273,
A325617,
A336416,
A336869.
A336865
Irregular triangle read by rows where T(n,k) is the number of divisors of n with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 0, 0
Offset: 1
The triangle begins as follows. The n-th row is shown to the right of "n:".
1: (1) 16: (1,1,1,1,1) 31: (1,1)
2: (1,1) 17: (1,1) 32: (1,1,1,1,1,1)
3: (1,1) 18: (1,2,1,1) 33: (1,2,0)
4: (1,1,1) 19: (1,1) 34: (1,2,0)
5: (1,1) 20: (1,2,1,1) 35: (1,2,0)
6: (1,2,0) 21: (1,2,0) 36: (1,2,2,2,0)
7: (1,1) 22: (1,2,0) 37: (1,1)
8: (1,1,1,1) 23: (1,1) 38: (1,2,0)
9: (1,1,1) 24: (1,2,1,2,1) 39: (1,2,0)
10: (1,2,0) 25: (1,1,1) 40: (1,2,1,2,1)
11: (1,1) 26: (1,2,0) 41: (1,1)
12: (1,2,1,1) 27: (1,1,1,1) 42: (1,3,0,0)
13: (1,1) 28: (1,2,1,1) 43: (1,1)
14: (1,2,0) 29: (1,1) 44: (1,2,1,1)
15: (1,2,0) 30: (1,3,0,0) 45: (1,2,1,1)
Row n = 72 counts the following divisors:
1 2 4 8 24 72
3 9 12
18
Row n = 1200 counts the following divisors:
1 2 4 8 16 48 400 1200
3 25 12 24 80 600
5 20 40 200
50
75
A130092 gives positions of rows ending with 0.
A146291 is the version not requiring distinct prime multiplicities.
A336499 is the restriction to factorial numbers.
A001222 counts prime factors, counting multiplicity.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor of n with distinct prime multiplicities.
-
Table[Length[Select[Divisors[n],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,20},{k,0,PrimeOmega[n]}]
A353693
a(n) is the least multiplier k such that the exponents in the prime factorization of k*n are mutually distinct (A130091).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 3, 2, 5, 2, 1, 2, 3, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 2, 1, 6, 1, 2, 1, 1, 5, 12, 1, 1, 3, 20, 1, 1, 1, 2, 1, 1, 7, 12, 1, 1, 1, 2, 1, 6, 5, 2
Offset: 1
a(2) = 1 since 2 = 2^1 has only one exponent (1) in its prime factorization.
a(6) = 2 since 6 = 2*3 has two equal exponents (1) in its prime factorization, and 2*6 = 12 = 2^2*3 has two distinct exponents (1 and 2).
-
a[n_] := Module[{k = 1}, While[!UnsameQ @@ FactorInteger[k*n][[;; , 2]], k++]; k]; Array[a, 100]
-
a(n) = my(k=1, f=factor(n)[,2]); while(#Set(f) != #f, k++; f=factor(k*n)[,2]); k; \\ Michel Marcus, May 05 2022
Comments