cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A169585 A000004 preceded by 1, 3.

Original entry on oeis.org

1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Klaus Brockhaus, Dec 02 2009

Keywords

Comments

Inverse binomial transform of A016777; second inverse binomial transform of A053220; third inverse binomial transform of A027471 without first term; fourth inverse binomial transform of A081039.

Crossrefs

Cf. A000004 (zero sequence), A016777 (3*n+1), A053220 ((3*n-1)*2^(n-2)), A027471 ((n-1)*3^(n-2)), A081039 ((3*n+4)*4^(n-1), a(0)=1, a(1)=7), A130706 (1, 2, 0, 0, 0, ...), A166926 (1, 2, 4, 0, 0, 0, ...), A130779 (1, 1, 2, 0, 0, 0, ...).

Programs

  • PARI
    {concat([1, 3], vector(103))}

Formula

a(0) = 1, a(1) = 3, a(n) = 0 for n > 1.
G.f.: 1+3*x.
a(n) = 3^n mod 9. - Ridouane Oudra, Apr 09 2025

A350530 Square array read by antidiagonals downwards: T(n,k) is the number of sequences of length n with terms in 0..k such that the (n-1)-st difference is zero, but no earlier iterated difference is zero, n, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 5, 4, 0, 0, 0, 0, 1, 6, 8, 0, 0, 0, 0, 0, 1, 7, 12, 4, 0, 0, 0, 0, 0, 1, 8, 18, 12, 8, 4, 0, 0, 0, 0, 1, 9, 24, 28, 36, 28, 4, 0, 0, 0, 0, 1, 10, 32, 52, 84, 116, 48, 16, 0, 0, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 03 2022

Keywords

Comments

For fixed n, T(n,k) is a quasi-polynomial of degree n-1 in k. For example, T(4,k) = (8/27)*k^3 - 2*k^2 + b(k)*k + c(k), where b and c are periodic with period 3.

Examples

			Array begins:
  n\k|  0  1  2  3  4   5    6     7     8      9     10
  ---+--------------------------------------------------
   1 |  1  1  1  1  1   1    1     1     1      1      1
   2 |  0  1  2  3  4   5    6     7     8      9     10
   3 |  0  0  0  2  4   8   12    18    24     32     40
   4 |  0  0  0  0  0   4   12    28    52     84    132
   5 |  0  0  0  0  0   8   36    84   176    332    568
   6 |  0  0  0  0  4  28  116   308   704   1396   2548
   7 |  0  0  0  0  4  48  232   728  2104   4940  11008
   8 |  0  0  0  0 16 100  556  1936  7092  19908  49364
   9 |  0  0  0  0 12 176 1348  6588 23356  74228 202504
  10 |  0  0  0  0  8 268 2492 15544 72820 259800 842688
For n = 4 and k = 6, the following T(4,6) = 12 sequences are counted: 1454, 1564, 2125, 2565, 3126, 3236, 4541, 4651, 5212, 5652, 6213, 6323.
		

Crossrefs

Rows: A000012 (n=1), A001477 (n=2), A007590 (n=3).
Columns: A000007 (k=0), A019590 (k=1), A130706 (k=2).

Programs

  • Python
    def A350530_col(k,nmax):
        d = []
        c = [0]*nmax
        while 1:
            if not d or all(d[-1][:-1]):
                if d and d[-1][-1] == 0:
                    c[len(d)-1] += 1 + (0 != 2*d[0][0] != k+1)
                elif len(d) < nmax:
                    d.append([-1])
                    for i in range(len(d)-1):
                        d[-1].append(d[-1][-1]-d[-2][i])
            while d and d[-1][0] == k:
                d.pop()
            if not d or len(d) == 1 and 2*d[0][0] >= k: return c
            for i in range(len(d)):
                d[-1][i] += 1

A136487 Coefficients of polynomial recursion p(n,x) = (x-1)*(p(n-1,x) - (x+1)*p(n-2,x)), p(0,x) = 1, p(1,x) = x+1.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, -1, -1, 0, 2, 0, -1, 2, 0, -4, 0, 2, -3, 2, 7, -4, -5, 2, 1, 5, -5, -11, 11, 7, -7, -1, 1, -8, 12, 16, -28, -8, 20, 0, -4, 13, -25, -20, 60, -2, -46, 12, 12, -3, -1, -21, 50, 19, -120, 38, 92, -50, -24, 15, 2, -1
Offset: 0

Views

Author

Roger L. Bagula, Mar 21 2008

Keywords

Comments

Only coefficients of x^k for k <= degree of p(n,x) are included. With this then, since p(2,x) = 0, row 2 is empty.
The same polynomial coefficients may be obtained, without signs, with the use of the recurrence p(x, n) = (x+1)*p(x, n-1) - (x^2-1)*p(x, n-2), and p(x, 0) = 1, p(x, 1) = x-1.

Examples

			First few rows are:
    1;
    1,   1;
   {};
    1,   1,  -1,   -1;
   -1,   0,   2,    0, -1;
    2,   0,  -4,    0,  2;
   -3,   2,   7,   -4, -5,   2,   1;
    5,  -5, -11,   11,  7,  -7,  -1,   1;
   -8,  12,  16,  -28, -8,  20,   0,  -4;
   13, -25, -20,   60, -2, -46,  12,  12, -3, -1;
  -21,  50,  19, -120, 38,  92, -50, -24, 15,  2, -1;
		

Crossrefs

Cf. A000045, A130706 (row sums).

Programs

  • Magma
    m:=12;
    function p(n,x)
      if n le 1 then return (x+1)^n;
      else return (x-1)*(p(n-1,x) - (x+1)*p(n-2,x));  end if;
    end function;
    R:=PowerSeriesRing(Integers(), m+2);
    T:= func< n,k | Coefficient(R!( p(n,x) ), k) >;
    [1,1,1] cat [T(n,k): k in [0..n], n in [3..m]]; // G. C. Greubel, Jul 31 2023
    
  • Maple
    F:= proc(n) option remember; expand((1-x)*procname(n-1)+(1-x^2)*procname(n-2)) end proc:
    F(0):= 1: F(1):= 1+x:
    R:=proc(n) local V,j;
     V:= F(n);
     seq(coeff(V,x,j),j=0..degree(V))
    end proc:
    for i from 0 to 20 do R(i) od; # Robert Israel, Dec 03 2018
  • Mathematica
    P[x,0]= 1; P[x,1]= x+1; P[x_,n_]:= P[x,n]= (x-1)*(P[x,n-1] - (x+1)*P[x,n-2]);
    Table[CoefficientList[P[x,n],x],{n,0,10}]//Flatten
  • SageMath
    def p(n,x):
        if n<2: return (x+1)^n
        else: return (x-1)*(p(n-1,x) - (x+1)*p(n-2,x))
    def T(n):
        P. = PowerSeriesRing(QQ)
        return P( p(n,x) ).list()
    flatten([T(n) for n in range(13)]) # G. C. Greubel, Jul 31 2023

Formula

T(n, k) = coefficient [x^k] ( p(x, n) ), where p(x,n) = (x-1)*p(x,n-1) - (x^2-1)*p(x,n-2), p(x,0) = 1, p(x,1) = x+1.
Sum_{k >= 0} T(n, k) = A130706(n).
From Robert Israel, Dec 03 2018: (Start)
T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,k-2) + T(n-2,k).
G.f. as array: (1-2*x)/(1 + x*(y-1)+x^2*(1-y^2)).
T(n,0) = (-1)^(n+1)*A000045(n-2) for n >= 3. (End)

Extensions

Edited by Robert Israel, Dec 03 2018

A167891 A000004 preceded by 1, 4, 2.

Original entry on oeis.org

1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Klaus Brockhaus, Nov 14 2009

Keywords

Comments

Inverse binomial transform of A028387.

Crossrefs

Cf. A000004 (zero sequence), A028387 (n+(n+1)^2), A166926 (1, 2, 4, 0, 0, 0, 0, ...), A130706 (1, 2, 0, 0, 0, 0, ...), A130779 (1, 1, 2, 0, 0, 0, 0, ...), A167858 (3, 14, 36, 36, 12, 0, 0, 0, ...), A167876 (1, 3, 4, 2, 0, 0, 0, ...).

Programs

  • PARI
    {concat([1, 4, 2], vector(100))}

Formula

a(0) = 1, a(1) = 4, a(2) = 2, a(n) = 0 for n > 2.
G.f.: 1+4*x+2*x^2.
Previous Showing 11-14 of 14 results.