A132263 Product{0<=k<=floor(log_11(n)), floor(n/11^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 275, 280, 285, 290, 295, 300, 305, 310
Offset: 1
Examples
a(50)=floor(50/11^0)*floor(50/11^1)=50*4=200; a(63)=315 since 63=58(base-11) and so a(63)=58*5(base-11)=63*5=315.
Crossrefs
Formula
Recurrence: a(n)=n*a(floor(n/11)); a(n*11^m)=n^m*11^(m(m+1)/2)*a(n).
a(k*11^m)=k^(m+1)*11^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_11(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_11(n)))/p^((1+floor(log_11(n)))*floor(log_11(n))/2); equality holds for n=k*11^m, 0=0. b(n) can also be written n^(1+floor(log_11(n)))/11^A000217(floor(log_11(n))).
Also: a(n)<=3^((1-log_11(3))/2)*n^((1+log_11(n))/2)=1.346673852...^((1-log_11(3))/2)*11^A000217(log_11(n)), equality holds for n=3*11^m, m>=0.
a(n)>c*b(n), where c=0.4751041275076031053975644472... (see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_11(sqrt(2)))*n^((1+log_11(n))/2)=0.607848303...*11^00217(log_11(n)).
lim inf a(n)/b(n)=0.4751041275076031053975644472..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=0.4751041275076031...*sqrt(2)/2^log_11(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(3)/3^log_11(sqrt(3))=1.346673852..., for n-->oo.
lim inf a(n)/a(n+1)=0.4751041275076031053975644472... for n-->oo (see constant A132265).
A132264 Product{0<=k<=floor(log_12(n)), floor(n/12^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 300, 305, 310, 315
Offset: 1
Comments
If n is written in base-12 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).
Examples
a(50)=floor(50/12^0)*floor(50/12^1)=50*4=200. a(65)=325 since 65=55(base-12) and so a(65)=55*5(base-12)=65*5=325.
Crossrefs
Formula
The following formulas are given for a general parameter p considering the product of terms floor(n/p^k) for 0<=k<=floor(log_p(n)), where p=12 for this sequence.
Recurrence: a(n)=n*a(floor(n/p)); a(n*p^m)=n^m*p^(m(m+1)/2)*a(n).
a(k*p^m)=k^(m+1)*p^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_p(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_p(n)))/p^((1+floor(log_p(n)))*floor(log_p(n))/2); equality holds for n=k*p^m, 0=0. b(n) can also be written n^(1+floor(log_p(n)))/p^A000217(floor(log_p(n))).
Also: a(n)<=q^((1-log_p(q))/2)*n^((1+log_p(n))/2)=q^((1-log_p(q))/2)*p^A000217(log_p(n)), equality holds for n=q*p^m, m>=0, where q=floor(sqrt(p)+1/2). Also, equality holds for n=(q+1)*p^m, provided p is a A002378-number (in this case we have p=q*(q+1) and so q^((1-log_p(q))/2)=(q+1)^((1-log_p(q+1))/2)).
a(n)>c*b(n), where c=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... (for p=12 see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_p(sqrt(2)))*n^((1+log_p(n))/2)=0.612870619...*p^A000217(log_p(n)), (p=12).
lim inf a(n)/b(n)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380198334286365820..., for n-->oo (for p=12 see constant A132265).
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=(sqrt(2)/2^log_p(sqrt(2)))*product{k>0, 1-1/(2*p^k)}=0.612870619..., for n-->oo, (p=12).
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(q)/q^log_p(sqrt(q))=1.358593737..., for n-->oo, (p=12, q=round(sqrt(p))=3).
lim inf a(n)/a(n+1)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... for n-->oo (for p=12 see constant A132265).
A132323 Decimal expansion of Product_{k>=0} (1+1/3^k).
3, 1, 2, 9, 8, 6, 8, 0, 3, 7, 1, 3, 4, 0, 2, 3, 0, 7, 5, 8, 7, 7, 6, 9, 8, 2, 1, 3, 4, 5, 7, 6, 7, 0, 8, 3, 3, 1, 3, 8, 8, 5, 1, 8, 3, 9, 7, 9, 0, 0, 7, 0, 0, 1, 8, 9, 9, 3, 4, 4, 2, 0, 5, 9, 8, 4, 6, 0, 4, 2, 2, 1, 4, 5, 1, 6, 1, 9, 3, 5, 3, 3, 8, 7, 8, 0, 7, 3, 2, 0, 7, 3, 5, 4, 5, 9, 2, 7, 7, 6, 3, 0, 5, 2, 0
Offset: 1
Comments
Twice the constant A132324.
Examples
3.12986803713402307587769821345767...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1200
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1+1/3^k, {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) 2*N[QPochhammer[-1/3,1/3]] (* G. C. Greubel, Dec 01 2015 *)
-
PARI
prodinf(x=0, 1+(1/3)^x) \\ Altug Alkan, Dec 03 2015
Formula
Equals lim sup_{n->oo} Product_{0<=k<=floor(log_3(n))} (1+1/floor(n/3^k)).
Equals lim sup_{n->oo} A132327(n)/n^((1+log_3(n))/2).
Equals lim sup_{n->oo} A132328(n)/n^((log_3(n)-1)/2).
Equals 2*exp(Sum_{n>0} 3^(-n) * Sum{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*3^n)).
Equals 2*(-1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
Equals sqrt(2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995). - Amiram Eldar, May 25 2023
A132265 Decimal expansion of Product_{k>=0} (1 - 1/(2*11^k)).
4, 7, 5, 1, 0, 4, 1, 2, 7, 5, 0, 7, 6, 0, 3, 1, 0, 5, 3, 9, 7, 5, 6, 4, 4, 4, 7, 2, 9, 4, 6, 9, 7, 6, 9, 4, 3, 3, 6, 9, 7, 1, 9, 2, 1, 1, 7, 0, 8, 5, 1, 1, 6, 3, 8, 0, 0, 7, 7, 3, 6, 6, 5, 4, 1, 3, 0, 4, 7, 5, 4, 4, 5, 7, 2, 4, 8, 7, 7, 3, 7, 2, 3, 0, 8, 4, 3, 7, 6, 9, 3, 7, 4, 4, 1, 6, 8, 2, 4, 9, 8, 2, 2, 7, 3
Offset: 0
Examples
0.47510412750760310539756444...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1500
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Programs
-
Mathematica
digits = 105; NProduct[1-1/(2*11^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+10] // N[#, digits+10]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) N[QPochhammer[1/2,1/11]] (* G. C. Greubel, Nov 30 2015 *)
-
PARI
prodinf(x=0, 1 - 1/(2*11^x)) \\ Altug Alkan, Dec 01 2015
Formula
lim inf Product_{k=0..floor(log_11(n))} floor(n/11^k)*11^k/n for n-->oo.
lim inf A132263(n)*11^((1+floor(log_11(n)))*floor(log_11(n))/2)/n^(1+floor(log_11(n))) for n-->oo.
(1/2)*exp(-Sum_{n>0} 11^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals (1/2; 1/11){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
A132268 Decimal expansion of Product_{k>0} (1-1/12^k).
9, 0, 9, 7, 2, 6, 2, 6, 8, 9, 0, 5, 9, 9, 4, 8, 8, 8, 6, 3, 6, 3, 6, 2, 0, 4, 6, 9, 7, 7, 0, 8, 0, 2, 4, 9, 1, 2, 0, 7, 9, 1, 6, 9, 1, 9, 4, 1, 0, 1, 4, 2, 7, 4, 3, 2, 6, 1, 5, 4, 4, 4, 1, 2, 8, 6, 9, 0, 2, 4, 5, 7, 6, 6, 1, 9, 5, 4, 1, 6, 2, 0, 2, 6, 0, 0, 0, 5, 5, 3, 8, 8, 8, 8, 1, 0, 8, 5, 1, 4, 8, 3, 9, 7, 1, 9
Offset: 0
Examples
0.9097262689059948886363620469770...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1200
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 106; NProduct[1-1/12^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) N[QPochhammer[1/12,1/12]] (* G. C. Greubel, Dec 05 2015 *)
-
PARI
prodinf(k=1, (1-1/12^k)) \\ Michel Marcus, Dec 05 2015
Formula
Equals exp(-Sum_{n>0} sigma_1(n)/(n*12^n)) = exp(-Sum_{n>0} A000203(n)/(n*12^n)).
Equals (1/12; 1/12){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 05 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(12)) * exp(log(12)/24 - Pi^2/(6*log(12))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(12))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027880(n). (End)
A132326 Decimal expansion of Product_{k>=1} (1+1/10^k).
1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 1, 3, 7, 0, 5, 0, 6, 3, 2, 1, 2, 6, 0, 7, 8, 0, 6, 7, 0, 9, 4, 4, 0, 5, 8, 0, 3, 7, 4, 7, 5, 0, 7, 4, 6, 7, 5, 7, 7, 5, 9, 2, 8, 3, 5, 7, 8, 7, 9, 5, 8, 2, 3, 7, 0, 3, 3, 2, 5, 3, 4, 6, 9, 4, 8, 8, 1, 4, 1, 1, 0, 4, 3, 7, 6, 4, 7, 2, 2, 2, 2, 6, 4, 2, 1, 3, 5, 2, 3, 5, 5, 6, 4, 7, 4
Offset: 1
Comments
Half the constant A132325.
Examples
1.1122345691370506321260780670944...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1200
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1+1/3^k, {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) N[QPochhammer[-1/10,1/10]] (* G. C. Greubel, Dec 01 2015 *)
-
PARI
prodinf(k=1, 1+1/10^k) \\ Amiram Eldar, May 20 2023
Formula
Equals (1/2)*lim sup_{n->oo} Product_{0<=k<=floor(log_10(n))} (1+1/floor(n/10^k)).
Equals (1/2)*lim sup_{n->oo} A132271(n)/n^((1+log_10(n))/2).
Equals (1/2)*lim sup_{n->oo} A132272(n)/n^((log_10(n)-1)/2).
Equals exp(Sum_{n>0} 10^(-n)*Sum_{k|n} -(-1)^k/k) = exp(Sum_{n>0} A000593(n)/(n*10^n)).
Equals (-1/10; 1/10){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
Equals (sqrt(2)/2) * exp(log(10)/24 + Pi^2/(12*log(10))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(10))) (McIntosh, 1995). - Amiram Eldar, May 20 2023
A132020 Decimal expansion of Product_{k>=0} (1 - 1/(2*4^k)).
4, 1, 9, 4, 2, 2, 4, 4, 1, 7, 9, 5, 1, 0, 7, 5, 9, 7, 7, 0, 9, 9, 5, 6, 1, 0, 7, 7, 0, 2, 9, 7, 4, 2, 5, 2, 2, 3, 3, 9, 5, 3, 2, 3, 4, 3, 9, 2, 6, 6, 6, 7, 4, 9, 0, 8, 0, 4, 4, 9, 9, 1, 6, 6, 3, 1, 7, 7, 2, 0, 5, 0, 8, 7, 2, 7, 0, 9, 1, 9, 3, 9, 1, 0, 0, 2, 3, 2, 4, 5, 4, 7, 4, 2, 3, 8, 1, 9, 5, 5, 0, 2, 8, 5, 8
Offset: 0
Comments
This is the limiting probability that a large random symmetric binary matrix is nonsingular (cf. A086812, A048651). In other words, equals Lim_{n->oo} A086812(n)/A006125(n+1).- H. Tracy Hall, Sep 07 2024
Examples
0.41942244179510759770995610770297425223395323439266674908044991663177...
Links
- John E. Cremona and R. W. K. Odoni, Some density results for negative Pell equations; an application of graph theory, Journal of the London Mathematical Society s2-39:1 (1989), pp. 16-28.
Crossrefs
Programs
-
Maple
evalf(1+sum((-1)^n*2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 23 2020
-
Mathematica
RealDigits[ Product[1 - 1/(2*4^i), {i, 0, 175}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *) RealDigits[QPochhammer[1/2, 1/4], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
-
PARI
prodinf(k=0,1-1.>>(2*k+1)) \\ Charles R Greathouse IV, Nov 16 2012
Formula
Equals lim inf_{n->oo} Product_{k=0..floor(log_4(n))} floor(n/4^k)*4^k/n.
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^((1/2)*(1+floor(log_4(n)))*floor(log_4(n))).
Equals (1/2)*exp(-Sum_{n>0} (4^(-n)*(Sum_{k|n} 1/(k*2^k)))).
Equals Product_{k>0} (1-1/(2^k+1)). - Robert G. Wilson v, May 25 2011
From Robert FERREOL, Feb 23 2020: (Start)
Equals Product_{k>0} (1 + 1/2^k)^(-1) = 2/A081845.
Equals 1 + Sum_{n>=1} (-1)^n*2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). (End)
From Peter Bala, Jan 15 2021: (Start)
Constant C = Sum_{n >= 0} 2^n/Product_{k = 1..n} (1 - 4^k).
Faster converging series:
2*C = (1/2)*Sum_{n >= 0} 2^(-n)/Product_{k = 1..n} (1 - 4^k);
(2^4)*C = 7*Sum_{n >= 0} 2^(-3*n)/Product_{k = 1..n} (1 - 4^k);
(2^9)*C = 7*31*Sum_{n >= 0} 2^(-5*n)/Product_{k = 1..n} (1 - 4^k), and so on.
Slower converging series:
C = -Sum_{n >= 0} 2^(3*n)/Product_{k = 1..n} (1 - 4^k);
7*C = Sum_{n >= 0} 2^(5*n)/Product_{k = 1..n} (1 - 4^k);
7*31*C = -Sum_{n >= 0} 2^(7*n)/Product_{k = 1..n} (1 - 4^k), and so on. (End)
Equals Product_{n>=0} (1 - 1/A004171(n)). - Amiram Eldar, May 09 2023
Extensions
Name corrected by Charles R Greathouse IV, Nov 16 2012
A132267 Decimal expansion of Product_{k>0} (1-1/11^k).
9, 0, 0, 8, 3, 2, 7, 0, 6, 8, 0, 9, 7, 1, 5, 2, 7, 9, 9, 4, 9, 8, 6, 2, 6, 9, 4, 7, 6, 0, 6, 4, 7, 7, 4, 4, 7, 6, 2, 4, 9, 1, 1, 9, 2, 2, 1, 6, 6, 3, 9, 5, 2, 4, 0, 2, 1, 4, 6, 1, 7, 2, 4, 8, 8, 0, 6, 5, 7, 0, 8, 7, 0, 6, 7, 0, 9, 7, 5, 8, 5, 6, 7, 0, 0, 1, 6, 3, 9, 2, 9, 9, 1, 9, 9, 2, 8, 3, 5, 6, 4, 6, 5, 2, 0
Offset: 0
Examples
0.900832706809715279949862694760...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2000
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1-1/11^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) N[QPochhammer[1/11, 1/11], 200] (* G. C. Greubel, Dec 20 2015 *)
-
PARI
prodinf(x=1, 1-1/11^x) \\ Altug Alkan, Dec 20 2015
Formula
Equals exp(-Sum_{n>0} sigma_1(n)/(n*11^n)) = exp(-Sum_{n>0} A000203(n)/(n*11^n)).
Equals (1/11; 1/11){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(11)) * exp(log(11)/24 - Pi^2/(6*log(11))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(11))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027879(n). (End)
A132324 Decimal expansion of Product_{k>=1} (1+1/3^k).
1, 5, 6, 4, 9, 3, 4, 0, 1, 8, 5, 6, 7, 0, 1, 1, 5, 3, 7, 9, 3, 8, 8, 4, 9, 1, 0, 6, 7, 2, 8, 8, 3, 5, 4, 1, 6, 5, 6, 9, 4, 2, 5, 9, 1, 9, 8, 9, 5, 0, 3, 5, 0, 0, 9, 4, 9, 6, 7, 2, 1, 0, 2, 9, 9, 2, 3, 0, 2, 1, 1, 0, 7, 2, 5, 8, 0, 9, 6, 7, 6, 6, 9, 3, 9, 0, 3, 6, 6, 0, 3, 6, 7, 7, 2, 9, 6, 3, 8, 8, 1, 5, 2, 6, 0
Offset: 1
Comments
Half the constant A132323.
Examples
1.56493401856701153793884910...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1200
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1+1/3^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) N[QPochhammer[-1/3,1/3]] (* G. C. Greubel, Dec 01 2015 *)
Formula
(1/2)*lim sup Product{k=0..floor(log_3(n))} (1+1/floor(n/3^k)) for n-->oo.
(1/2)*lim sup A132327(n)/n^((1+log_3(n))/2) for n-->oo.
(1/2)*lim sup A132328(n)/n^((log_3(n)-1)/2) for n-->oo.
exp(Sum_{n>0} 3^(-n)*Sum_{k|n} -(-1)^k/k) = exp(Sum_{n>0} A000593(n)/(n*3^n)).
Equals (-1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
From Amiram Eldar, Feb 19 2022: (Start)
Equals (sqrt(2)/2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} 1/A027871(n). (End)
A132325 Decimal expansion of Product_{k>=0} (1+1/10^k).
2, 2, 2, 4, 4, 6, 9, 1, 3, 8, 2, 7, 4, 1, 0, 1, 2, 6, 4, 2, 5, 2, 1, 5, 6, 1, 3, 4, 1, 8, 8, 8, 1, 1, 6, 0, 7, 4, 9, 5, 0, 1, 4, 9, 3, 5, 1, 5, 5, 1, 8, 5, 6, 7, 1, 5, 7, 5, 9, 1, 6, 4, 7, 4, 0, 6, 6, 5, 0, 6, 9, 3, 8, 9, 7, 6, 2, 8, 2, 2, 0, 8, 7, 5, 2, 9, 4, 4, 4, 4, 5, 2, 8, 4, 2, 7, 0, 4, 7, 1, 1, 2, 9, 4, 8
Offset: 1
Comments
Twice the constant A132326.
Examples
2.22446913827410126425215613418881160749501...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1200
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1+1/10^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) 2*N[QPochhammer[-1/10,1/10]] (* G. C. Greubel, Dec 02 2015 *)
-
PARI
prodinf(x=0, 1+(1/10)^x) \\ Altug Alkan, Dec 03 2015
Formula
Equals lim sup_{n->oo} Product_{0<=k<=floor(log_10(n))} (1+1/floor(n/10^k)).
Equals lim sup_{n->oo} A132271(n)/n^((1+log_10(n))/2).
Equals lim sup_{n->oo} A132272(n)/n^((log_10(n)-1)/2).
Equals 2*exp(Sum_{n>0} 10^(-n)*Sum_{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*10^n)).
Equals 2*(-1/10; 1/10){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 02 2015
Equals sqrt(2) * exp(log(10)/24 + Pi^2/(12*log(10))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(10))) (McIntosh, 1995). - Amiram Eldar, May 20 2023
Comments