cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A004171 a(n) = 2^(2n+1).

Original entry on oeis.org

2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832, 140737488355328, 562949953421312
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(2, 8), L(2, 8), P(2, 8), T(2, 8). See A008776 for definitions of Pisot sequences.
In the Chebyshev polynomial of degree 2n, a(n) is the coefficient of x^2n. - Benoit Cloitre, Mar 13 2002
1/2 - 1/8 + 1/32 - 1/128 + ... = 2/5. - Gary W. Adamson, Mar 03 2009
From Adi Dani, May 15 2011: (Start)
Number of ways of placing an even number of indistinguishable objects in n + 1 distinguishable boxes with at most 3 objects in box.
Number of compositions of even natural numbers into n + 1 parts less than or equal to 3 (0 is counted as part). (End)
Also the number of maximal cliques in the (n+1)-Sierpinski tetrahedron graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Assuming the Collatz conjecture is true, any starting number eventually leads to a power of 2. A number in this sequence can never be the first power of 2 in a Collatz sequence except of course for the Collatz sequence starting with that number. For example, except for 8, 4, 2, 1, any Collatz sequence that includes 8 must also include 16 (e.g., 5, 16, 8, 4, 2, 1). - Alonso del Arte, Oct 01 2019
First differences of A020988, and thus the "wavelengths" of the local maxima in A020986. See the Brillhart and Morton link, pp. 855-856. - John Keith, Mar 04 2021

Examples

			G.f. = 2 + 8*x + 32*x^2 + 128*x^3 + 512*x^4 + 2048*x^5 + 8192*x^6 + 32768*x^7 + ...
From _Adi Dani_, May 15 2011: (Start)
a(1) = 8 because all compositions of even natural numbers into 2 parts less than or equal to 3 are:
  for 0: (0, 0)
  for 2: (0, 2), (2, 0), (1, 1)
  for 4: (1, 3), (3, 1), (2, 2)
  for 6: (3, 3).
a(2) = 32 because all compositions of even natural numbers into 3 parts less than or equal to 3 are:
  for 0: (0, 0, 0)
  for 2: (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1) , (1, 1, 0)
  for 4: (0, 1, 3), (0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1)
  for 6: (0, 3, 3), (3, 0, 3), (3, 3, 0), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2)
  for 8: (2, 3, 3), (3, 2, 3), (3, 3, 2).
(End)
		

References

  • Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.

Crossrefs

Absolute value of A009117. Essentially the same as A081294.
Cf. A132020, A164632. Equals A000980(n) + 2*A181765(n). Cf. A013776.

Programs

Formula

a(n) = 2*4^n.
a(n) = 4*a(n-1).
1 = 1/2 + Sum_{n >= 1} 3/a(n) = 3/6 + 3/8 + 3/32 + 3/128 + 3/512 + 3/2048 + ...; with partial sums: 1/2, 31/32, 127/128, 511/512, 2047/2048, ... - Gary W. Adamson, Jun 16 2003
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 2*A000302(n).
G.f.: 2/(1-4*x). (End)
a(n) = A081294(n+1) = A028403(n+1) - A000079(n+1) for n >= 1. a(n-1) = A028403(n) - A000079(n). - Jaroslav Krizek, Jul 27 2009
E.g.f.: 2*exp(4*x). - Ilya Gutkovskiy, Nov 01 2016
a(n) = A002063(n)/3 - A000302(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = Sum_{k = 0..2*n} (-1)^(k+n)*binomial(4*n + 2, 2*k + 1); a(2*n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A013776(n). - Peter Bala, Nov 25 2016
Product_{n>=0} (1 - 1/a(n)) = A132020. - Amiram Eldar, May 08 2023

A048651 Decimal expansion of Product_{k >= 1} (1 - 1/2^k).

Original entry on oeis.org

2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2
Offset: 0

Views

Author

Keywords

Comments

This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).
This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018
This constant is irrational (see Penn link). - Paolo Xausa, Dec 09 2024

Examples

			(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 318, 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009

Formula

exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007
From Hieronymus Fischer, Aug 13 2007: (Start)
Equals lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo.
Equals (1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). (End)
Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011
Product_{k >= 1} (1-1/2^k) = (1/2; 1/2){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016
(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016
Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020
From Peter Bala, Dec 15 2020: (Start)
Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.
C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).
C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).
1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).
C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).
This latter identity generalizes as:
C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.
(End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A005329(n).
Equals exp(-A335764). (End)
Equals 1/A065446. - Hugo Pfoertner, Nov 23 2024

Extensions

Corrected by Hieronymus Fischer, Jul 28 2007

A100221 Decimal expansion of Product_{k>=1} (1-1/4^k).

Original entry on oeis.org

6, 8, 8, 5, 3, 7, 5, 3, 7, 1, 2, 0, 3, 3, 9, 7, 1, 5, 4, 5, 6, 5, 1, 4, 3, 5, 7, 2, 9, 3, 5, 0, 8, 1, 8, 4, 6, 7, 5, 5, 4, 9, 8, 1, 9, 3, 7, 8, 3, 3, 5, 7, 3, 5, 3, 4, 0, 1, 5, 7, 2, 3, 2, 5, 7, 7, 5, 3, 3, 1, 9, 8, 4, 5, 0, 7, 9, 8, 6, 7, 5, 1, 2, 4, 8, 0, 3, 3, 4, 6, 0, 4, 8, 1, 4, 2, 8, 8, 7, 9, 0, 5
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Examples

			0.68853753712033971545651435729350818467554981937833...
		

Crossrefs

Programs

  • Mathematica
    EllipticThetaPrime[1, 0, 1/2]^(1/3)/2^(1/4)
    N[QPochhammer[1/4]] (* G. C. Greubel, Nov 30 2015 *)
    RealDigits[Fold[Times,1-1/4^Range[1000]],10,110][[1]] (* Harvey P. Dale, Sep 27 2024 *)
  • PARI
    prodinf(x=1, 1-1/4^x) \\ Altug Alkan, Dec 01 2015

Formula

Equals exp(-Sum_{k>0} sigma_1(k)/(k*4^k)) where sigma_1() is A000203(). - Hieronymus Fischer, Aug 07 2007
Equals (1/4; 1/4){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(Pi/log(2)) * exp(log(2)/12 - Pi^2/(12*log(2))) * Product_{k>=1} (1 - exp(-2*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027637(n). (End)

A100222 Decimal expansion of Product_{k>=1} (1-1/5^k).

Original entry on oeis.org

7, 6, 0, 3, 3, 2, 7, 9, 5, 8, 7, 1, 2, 3, 2, 4, 2, 0, 1, 0, 1, 4, 8, 8, 2, 9, 6, 2, 9, 2, 6, 6, 5, 1, 5, 9, 4, 7, 4, 3, 4, 3, 9, 2, 8, 8, 7, 3, 2, 0, 5, 7, 9, 5, 1, 9, 8, 7, 7, 0, 9, 8, 4, 4, 0, 0, 8, 8, 8, 8, 5, 9, 9, 5, 3, 7, 5, 5, 2, 3, 3, 6, 5, 2, 7, 5, 1, 5, 3, 4, 0, 8, 6, 6, 1, 4, 3, 2, 3, 2, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Examples

			0.76033279587123242010148829629266515947434392887320...
		

Crossrefs

Programs

  • Mathematica
    (5^(1/24)*EllipticThetaPrime[1, 0, 1/Sqrt[5]]^(1/3))/2^(1/3)
    N[QPochhammer[1/5,1/5]] (* G. C. Greubel, Dec 01 2015 *)
  • PARI
    prodinf(k=1, 1 - 1/(5^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals exp(-Sum_{k>0} sigma_1(k)/(k*5^k)) = exp(-Sum_{k>0} A000203(k)/(k*5^k)). - Hieronymus Fischer, Aug 07 2007
Equals (1/5; 1/5){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(5)) * exp(log(5)/24 - Pi^2/(6*log(5))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(5))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027872(n). (End)

A246936 Number of partitions of n into 4 sorts of parts.

Original entry on oeis.org

1, 4, 20, 84, 356, 1444, 5876, 23604, 94852, 379908, 1521492, 6088148, 24360548, 97451492, 389838708, 1559394356, 6237711300, 24951007620, 99804576340, 399218968084, 1596878076132, 6387515000292, 25550068873908, 102200286367156, 408801181153476
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Crossrefs

Column k=4 of A246935.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 4*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    (O[x]^20 - 3/QPochhammer[4, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1]+If[i>n, 0, 4 b[n-i, i]]]];
    a[n_] := b[n, n];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{i>=1} 1/(1-4*x^i).
a(n) ~ c * 4^n, where c = Product_{k>=1} 1/(1-1/4^k) = A065446 * A132020 = 1.4523536424495970158347... . - Vaclav Kotesovec, Mar 19 2015
G.f.: Sum_{i>=0} 4^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018

A132028 Product{0<=k<=floor(log_4(n)), floor(n/4^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 45, 64, 68, 72, 76, 100, 105, 110, 115, 144, 150, 156, 162, 196, 203, 210, 217, 512, 528, 544, 560, 648, 666, 684, 702, 800, 820, 840, 860, 968, 990, 1012, 1034, 1728, 1764, 1800, 1836, 2028, 2067, 2106, 2145, 2352
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-4 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(26)=floor(26/4^0)*floor(26/4^1)*floor(26/4^2)=26*6*1=156; a(34)=544 since 34=202(base-4) and so
a(34)=202*20*2(base-4)=34*8*2=544.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

Recurrence: a(n)=n*a(floor(n/4)); a(n*4^m)=n^m*4^(m(m+1)/2)*a(n).
a(k*4^m)=k^(m+1)*4^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_4(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_4(n)))/4^((1+floor(log_4(n)))*floor(log_4(n))/2); equality holds for n=k*4^m, 0=0. b(n) can also be written n^(1+floor(log_4(n)))/4^A000217(floor(log_4(n))).
Also: a(n)<=2^(1/4)*n^((1+log_4(n))/2)=1.189207...*4^A000217(log_4(n)), equality holds for n=2*4^m, m>=0.
a(n)>c*b(n), where c=0.4194224417951075977... (see constant A132020).
Also: a(n)>c*2^(1/4)*n^((1+log_4(n))/2)=0.498780...*4^A000217(log_4(n)).
lim inf a(n)/b(n)=0.4194224417951075977..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_4(n))/2)=0.4194224417951075977...*2^(1/4), for n-->oo.
lim sup a(n)/n^((1+log_4(n))/2)=2^(1/4), for n-->oo.
lim inf a(n)/a(n+1)=0.4194224417951075977... for n-->oo (see constant A132020).

A141848 Decimal expansion of the Pell constant.

Original entry on oeis.org

5, 8, 0, 5, 7, 7, 5, 5, 8, 2, 0, 4, 8, 9, 2, 4, 0, 2, 2, 9, 0, 0, 4, 3, 8, 9, 2, 2, 9, 7, 0, 2, 5, 7, 4, 7, 7, 6, 6, 0, 4, 6, 7, 6, 5, 6, 0, 7, 3, 3, 3, 2, 5, 0, 9, 1, 9, 5, 5, 0, 0, 8, 3, 3, 6, 8, 2, 2, 7, 9, 4, 9, 1, 2, 7, 2, 9, 0, 8, 0, 6, 0, 8, 9, 9, 7, 6, 7, 5, 4, 5, 2, 5, 7, 6, 1, 8, 0, 4, 4, 9, 7, 1, 4, 1
Offset: 0

Author

Eric W. Weisstein, Jul 11 2008

Keywords

Examples

			0.58057755820489240229...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.8, pp. 119-120.

Crossrefs

Cf. A132020.

Programs

  • Mathematica
    RealDigits[1-QPochhammer[1/2,1/4],10,120][[1]] (* Harvey P. Dale, Dec 17 2011 *)

Formula

Equals 1 - QPochhammer(1/2, 1/4).
Equals 1 - Product_{n>=0} (1 - 1/2^(2*n+1)). - Jean-François Alcover, May 20 2014
Equals 1 - A132020. - Amiram Eldar, Apr 11 2022

A330862 Decimal expansion of Product_{k>=1} (1 - 1/(-2)^k).

Original entry on oeis.org

1, 2, 1, 0, 7, 2, 4, 1, 3, 0, 3, 0, 1, 0, 5, 9, 1, 8, 0, 1, 3, 6, 1, 7, 2, 8, 5, 6, 1, 0, 5, 9, 0, 5, 0, 4, 6, 3, 6, 8, 0, 4, 1, 6, 3, 1, 1, 2, 3, 1, 3, 7, 6, 4, 3, 4, 7, 6, 1, 5, 9, 2, 4, 5, 5, 4, 0, 0, 0, 6, 8, 7, 5, 6, 5, 9, 1, 8, 4, 5, 0, 4, 9, 9, 1, 6, 5, 0, 7, 6, 1, 0, 1, 3, 3, 5, 5, 5, 3, 9, 5, 3, 9, 9, 6, 4, 6, 3, 3, 0, 9
Offset: 1

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 + 1/2) * (1 - 1/2^2) * (1 + 1/2^3) * (1 - 1/2^4) * (1 + 1/2^5) * ... = 1.2107241303010591801361728561...
		

Programs

  • Mathematica
    RealDigits[QPochhammer[-1/2, -1/2], 10, 111] [[1]]
    N[QPochhammer[-2, 1/4]*QPochhammer[1/4]/3, 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 - 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} (4^k - 1)*(4^k + 2)/4^(2*k).
Equals exp(-Sum_{k>=1} A000203(k)/(k*(-2)^k)).

A330863 Decimal expansion of Product_{k>=1} (1 + 1/(-2)^k).

Original entry on oeis.org

5, 6, 8, 6, 9, 8, 9, 4, 6, 2, 6, 5, 4, 2, 8, 5, 0, 5, 9, 5, 4, 9, 7, 6, 7, 3, 7, 0, 7, 4, 4, 4, 4, 6, 5, 4, 2, 9, 0, 8, 5, 2, 4, 5, 1, 3, 8, 9, 3, 5, 9, 0, 2, 9, 3, 1, 9, 3, 4, 4, 0, 4, 6, 0, 1, 8, 3, 5, 3, 5, 6, 3, 2, 3, 0, 9, 1, 2, 6, 4, 0, 9, 6, 1, 4, 6, 4, 4, 1, 1, 7, 3, 0, 6, 1, 4, 8, 6, 0, 4, 8, 0, 2, 7, 2, 6, 9, 4, 1, 8
Offset: 0

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 - 1/2) * (1 + 1/2^2) * (1 - 1/2^3) * (1 + 1/2^4) * (1 - 1/2^5) * ... = 0.568698946265428505954976737...
		

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, -1/2]/2, 10, 110] [[1]]
    N[3/QPochhammer[-2, 1/4], 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 + 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} 1/(1 + 1/2^(2*k-1)).
Equals exp(Sum_{k>=1} A000593(k)/(k*(-2)^k)).
From Peter Bala, Dec 15 2020: (Start)
Constant C = (2/3) - (1/3)*Sum_{n >= 0} (-1)^n * 2^(n^2)/( Product_{k = 1..n+1} 4^k - 1 ).
C = Sum_{n >= 0} 1/( Product_{k = 1..n} (-2)^k - 1 ) = 1 - 1/3 - 1/9 + 1/81 + 1/1215 - - + + ... = Sum_{n >= 0} 1/A216206(n).
C = 1 + Sum_{n >= 0} (-1/2)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
3*C = 2 - Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
9*C = 5 - Sum_{n >= 0} (-1/8)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
81*C = 46 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
1215*C = 691 + Sum_{n >= 0} (-1/32)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
The sequence [1, 2, 5, 46, 691, ...] is the sequence of numerators of the partial sums of the series Sum_{n >= 0} 1/A216206(n). (End)
Showing 1-9 of 9 results.