cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A167053 a(1)=3; for n > 1, a(n) = 1 + a(n-1) + gcd( a(n-1)*(a(n-1)+2), A073829(a(n-1)) ).

Original entry on oeis.org

3, 19, 39, 81, 165, 333, 335, 673, 1347, 1349, 1351, 1353, 1355, 1357, 1359, 2721, 2723, 2725, 2727, 5457, 5459, 5461, 5463, 5465, 5467, 5469, 10941, 10943, 10945, 10947, 21897, 21899, 21901, 21903, 21905, 21907, 21909, 43821, 43823, 43825, 43827, 43829, 43831
Offset: 1

Views

Author

Vladimir Shevelev, Oct 27 2009

Keywords

Comments

The first differences are 16, 20, 42, etc. They are either 2 or in A075369 or in A008864, see A167054.
A proof follows from Clement's criterion of twin primes.

Examples

			a(2) = 1 + 3 + gcd(3*5, 4*(2! + 1) + 3) = 19.
		

References

  • E. Trost, Primzahlen, Birkhäuser-Verlag, 1953, pages 30-31.

Crossrefs

Programs

  • Maple
    A073829 := proc(n) n+4*((n-1)!+1) ; end proc:
    A167053 := proc(n) option remember ; local aprev; if n = 1 then 3; else aprev := procname(n-1) ; 1+aprev+gcd(aprev*(aprev+2),A073829(aprev)) ; end if; end proc:
    seq(A167053(n),n=1..60) ; # R. J. Mathar, Dec 17 2009
  • Mathematica
    A073829[n_] := 4((n-1)! + 1) + n;
    a[1] = 3;
    a[n_] := a[n] = 1 + a[n-1] + GCD[a[n-1] (a[n-1] + 2), A073829[a[n-1]]];
    Array[a, 60] (* Jean-François Alcover, Mar 25 2020 *)

Extensions

Definition shortened and values from a(4) on replaced by R. J. Mathar, Dec 17 2009

A134734 First differences of A084662.

Original entry on oeis.org

2, 3, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2008

Keywords

References

  • Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

Crossrefs

See A106108 for other cross-references.

Programs

  • Haskell
    a134734 n = a134734_list !! (n-1)
    a134734_list = zipWith (-) (tail a084662_list) a084662_list
    -- Reinhard Zumkeller, Nov 15 2013
  • Mathematica
    b[1] = 4; b[n_] := b[n] = b[n-1] + GCD[n, b[n-1]];
    Table[b[n], {n, 104}] // Differences (* Jean-François Alcover, Sep 28 2018 *)

Formula

a(n) = A132199(n), n > 2. - R. J. Mathar, Mar 28 2012

A134744 First differences of A084663.

Original entry on oeis.org

2, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 13, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 59, 3, 1, 1, 7, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2008

Keywords

References

  • Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

Crossrefs

Cf. A084663. See A106108 for other cross-references.

Programs

  • Haskell
    a134744 n = a134744_list !! (n-1)
    a134744_list = zipWith (-) (tail a084663_list) a084663_list
    -- Reinhard Zumkeller, Nov 15 2013
  • Mathematica
    b[1] = 8; b[n_] := b[n] = b[n-1] + GCD[n, b[n-1]];
    Table[b[n], {n, 105}] // Differences (* Jean-François Alcover, Sep 28 2018 *)

A167054 Values of A167053(k)-A167053(k-1)-1 not equal to 1.

Original entry on oeis.org

15, 19, 41, 83, 167, 337, 673, 1361, 2729, 5471, 10949, 21911, 43853, 87719, 175447, 350899, 701819, 1403641, 2807303, 5614657, 11229331, 22458671, 44917381, 89834777, 179669557, 359339171, 718678369
Offset: 1

Views

Author

Vladimir Shevelev, Oct 27 2009

Keywords

Comments

All terms of the sequence are primes or products of twin primes (A037074).

Crossrefs

Extensions

Values from a(3) on replaced by R. J. Mathar, Dec 17 2009
More terms from Amiram Eldar, Sep 13 2019

A134743 First differences of A134736.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2008

Keywords

References

  • Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

Crossrefs

See A106108 for other cross-references.

Programs

  • Haskell
    a134743 n = a134743_list !! (n-1)
    a134743_list = zipWith (-) (tail a134736_list) a134736_list
    -- Reinhard Zumkeller, Nov 15 2013
  • Mathematica
    b[1] = 5; b[n_] := b[n] = b[n-1] + GCD[n, b[n-1]];
    Array[b, 104] // Differences (* Jean-François Alcover, Oct 01 2018 *)

Formula

a(n) = A132199(n), n>2. [R. J. Mathar, Dec 13 2008]

A167170 a(6) = 14, for n >= 7, a(n) = a(n-1) + gcd(n, a(n-1)).

Original entry on oeis.org

14, 21, 22, 23, 24, 25, 26, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 177, 180, 181, 182, 189, 190, 195
Offset: 6

Views

Author

Vladimir Shevelev, Oct 29 2009, Nov 06 2009

Keywords

Comments

For every n >= 7, a(n) - a(n-1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168).

Crossrefs

Programs

  • Maple
    A167170 := proc(n) option remember; if n = 6 then 14; else procname(n-1)+igcd(n,procname(n-1)) ; end if; end proc: seq(A167170(i),i=6..80) ; # R. J. Mathar, Oct 30 2010
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + GCD[n, a[n - 1]], a[6] == 14}, a, {n, 6, 100}] (* G. C. Greubel, Jun 04 2016 *)
    nxt[{n_,a_}]:={n+1,a+GCD[a,n+1]}; NestList[nxt,{6,14},60][[All,2]] (* Harvey P. Dale, Nov 03 2019 *)
  • PARI
    first(n)=my(v=vector(n-5)); v[1]=14; for(k=7,n, v[k-5]=v[k-6]+gcd(k,v[k-6])); v \\ Charles R Greathouse IV, Aug 22 2017

Extensions

Terms > 91 from R. J. Mathar, Oct 30 2010

A167195 a(2)=3, for n>=3, a(n)=a(n-1)+gcd(n, a(n-1)).

Original entry on oeis.org

3, 6, 8, 9, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116
Offset: 2

Views

Author

Vladimir Shevelev, Oct 30 2009, Nov 06 2009

Keywords

Comments

For every n>=3, a(n)-a(n-1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 and from generators A167168. Generalization: Let p be a prime. Let N(p-1)=p and for n>=p, N(n)=N(n-1)+gcd(n, N(n-1)). Then, for every n>=p, N(n)-N(n-1) is 1 or prime.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + GCD[n, a[n - 1]], a[2] == 3}, a, {n, 2, 100}] (* G. C. Greubel, Jun 05 2016 *)

Formula

a(n) = a(n-1) + 1 if gcd(a(n-1), n) = 1, or a(n) = 2*n otherwise. - Yifan Xie, Aug 20 2025

Extensions

Edited by Charles R Greathouse IV, Nov 02 2009

A167495 Records in A167494.

Original entry on oeis.org

2, 3, 5, 13, 31, 61, 139, 283, 571, 1153, 2311, 4651, 9343, 19141, 38569, 77419, 154873, 310231, 621631, 1243483, 2486971, 4974721
Offset: 1

Views

Author

Vladimir Shevelev, Nov 05 2009

Keywords

Comments

Conjecture: each term > 3 of the sequence is the greater member of a twin prime pair (A006512).
Indices of the records are 1, 2, 4, 6, 9, 10, 15, 18, 21, 25, 28, 30, 38, 72, 90, ... [R. J. Mathar, Nov 05 2009]
One can formulate a similar conjecture without verification of the primality of the terms (see Conjecture 4 in my paper). [Vladimir Shevelev, Nov 13 2009]

Crossrefs

Programs

  • Mathematica
    nxt[{n_, a_}] := {n + 1, If[EvenQ[n], a + GCD[n+1, a], a + GCD[n-1, a]]};
    A167494 = DeleteCases[Differences[Transpose[NestList[nxt, {1, 2}, 10^7]][[2]]], 1];
    Tally[A167494][[All, 1]] //. {a1___, a2_, a3___, a4_, a5___} /; a4 <= a2 :> {a1, a2, a3, a5} (* Jean-François Alcover, Oct 29 2018, using Harvey P. Dale's code for A167494 *)

Extensions

Simplified the definition to include all records; one term added by R. J. Mathar, Nov 05 2009
a(16) to a(21) from R. J. Mathar, Nov 19 2009
a(22) from Jean-François Alcover, Oct 29 2018

A167197 a(6) = 7, for n >= 7, a(n) = a(n - 1) + gcd(n, a(n - 1)).

Original entry on oeis.org

7, 14, 16, 17, 18, 19, 20, 21, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 116, 117, 120, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 6

Views

Author

Vladimir Shevelev, Oct 30 2009, Nov 06 2009

Keywords

Comments

For every n >= 7, a(n) - a(n - 1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168) and from A167170. Note that, lim sup a(n) / n = 2, while lim sup A106108(n) / n = lim sup A167170(n) / n = 3.
Going up to a million, differences of two consecutive terms of this sequence gives primes about 0.009% of the time. The rest are 1's. [Alonso del Arte, Nov 30 2009]

Crossrefs

Programs

  • Maple
    A[6]:= 7:
    for n from 7 to 100 do A[n]:= A[n-1] + igcd(n,A[n-1]) od:
    seq(A[i],i=6..100); # Robert Israel, Jun 05 2016
  • Mathematica
    a[6] = 7; a[n_ /; n > 6] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Table[a[n], {n, 6, 58}]
  • Python
    from math import gcd
    def aupton(nn):
        alst = [7]
        for n in range(7, nn+1): alst.append(alst[-1] + gcd(n, alst[-1]))
        return alst
    print(aupton(68)) # Michael S. Branicky, Jul 14 2021

Extensions

Verified and edited by Alonso del Arte, Nov 30 2009

A167493 a(1) = 2; thereafter a(n) = a(n-1) + gcd(n, a(n-1)) if n is odd, and a(n) = a(n-1) + gcd(n-2, a(n-1)) if n is even.

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126
Offset: 1

Views

Author

Vladimir Shevelev, Nov 05 2009

Keywords

Comments

Conjectures. 1) For n >= 2, every difference a(n) - a(n-1) is 1 or prime; 2) Every record of differences a(n) - a(n-1) greater than 3 belongs to the sequence of the greater of twin primes (A006512).
Conjecture #1 above fails at n = 620757, with a(n) = 1241487 and a(n-1) = 1241460, difference = 27. Additionally, the terms of related A167495(m) quickly tend to index n/2. So for example, A167495(14) = 19141 is seen at n = 38284. - Bill McEachen, Jan 20 2023
It seems that, for n > 4, (3*n-3)/2 <= a(n) <= 2n - 3. Can anyone find a proof or disproof? - Charles R Greathouse IV, Jan 22 2023

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+GCD[n+1,a],a+GCD[n-1,a]]}; Transpose[ NestList[nxt,{1,2},70]][[2]] (* Harvey P. Dale, Dec 05 2015 *)
  • PARI
    lista(nn)=my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1]));); va; \\ Michel Marcus, Dec 13 2018
    
  • Python
    from math import gcd
    from itertools import count, islice
    def agen(): # generator of terms
        an = 2
        for n in count(2):
            yield an
            an = an + gcd(n, an) if n&1 else an + gcd(n-2, an)
    print(list(islice(agen(), 66))) # Michael S. Branicky, Jan 22 2023

Formula

For n > 3, n < a(n) < n*(n-1)/2. - Charles R Greathouse IV, Jan 22 2023

Extensions

More terms from Harvey P. Dale, Dec 05 2015
Previous Showing 11-20 of 26 results. Next