A369192
Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).
Original entry on oeis.org
1, 1, 2, 8, 57, 638, 9949, 198440, 4791323, 135142796, 4346814276, 156713948672, 6251579884084, 273172369790743, 12969420360339724, 664551587744173992, 36543412829258260135, 2146170890448154922648, 134053014635659737513358, 8872652968135849629240560
Offset: 0
The a(0) = 1 through a(3) = 8 graphs:
{} {} {} {}
{{1,2}} {{1,2}}
{{1,3}}
{{2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
Counting only covered vertices gives
A369193.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]],{n,0,5}]
-
from math import comb
def A369192(n): return sum(comb(comb(n,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 14 2024
A054780
Number of n-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 3, 32, 1225, 155106, 63602770, 85538516963, 386246934638991, 6001601072676524540, 327951891446717800997416, 64149416776011080449232990868, 45546527789182522411309599498741023, 118653450898277491435912500458608964207578
Offset: 0
From _Gus Wiseman_, Dec 19 2023: (Start)
Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are:
{1}{2}{3} {1}{2}{13} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{23} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{3}{12} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{23} {1}{12}{23} {2}{12}{123}
{2}{3}{12} {1}{13}{23} {2}{13}{123}
{2}{3}{13} {2}{3}{123} {2}{23}{123}
{2}{12}{13} {3}{12}{123}
{2}{12}{23} {3}{13}{123}
{2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
(End)
Covers with any number of edges are counted by
A003465, unlabeled
A055621.
Connected graphs of this type are counted by
A057500, unlabeled
A001429.
This is the covering case of
A136556.
These set-systems have ranks
A367917.
-
Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *)
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]],{n}],Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024
A370587
Number of subsets of {1..n} containing n such that it is not possible to choose a different prime factor of each element (non-choosable).
Original entry on oeis.org
0, 1, 1, 2, 6, 10, 24, 44, 116, 236, 468, 908, 1960, 3776, 7812, 15876, 32504, 63744, 130104, 257592, 521152, 1042976, 2087096, 4166408, 8376816, 16760832, 33507744, 67089280, 134169440, 268236928, 536759984, 1073233840, 2147384000, 4294503744, 8589075216, 17179048048
Offset: 0
The a(0) = 0 through a(5) = 10 subsets:
. {1} {1,2} {1,3} {1,4} {1,5}
{1,2,3} {2,4} {1,2,5}
{1,2,4} {1,3,5}
{1,3,4} {1,4,5}
{2,3,4} {2,4,5}
{1,2,3,4} {1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by
A370586.
For a unique choice we have
A370588.
For binary indices instead of factors we have
A370639, complement
A370589.
A355741 counts choices of a prime factor of each prime index.
A368098 counts choosable unlabeled multiset partitions, complement
A368097.
A370585 counts maximal choosable sets.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]
A370810
Numbers n such that only one set can be obtained by choosing a different divisor of each prime index of n.
Original entry on oeis.org
1, 2, 6, 9, 10, 22, 25, 30, 34, 42, 45, 62, 63, 66, 75, 82, 98, 99, 102, 110, 118, 121, 134, 147, 153, 166, 170, 186, 210, 218, 230, 246, 254, 275, 279, 289, 310, 314, 315, 330, 343, 354, 358, 363, 369, 374, 382, 390, 402, 410, 422, 425, 462, 482, 490, 495
Offset: 1
The prime indices of 6591 are {2,6,6,6}, for which the only choice is {1,2,3,6}, so 6591 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
22: {1,5}
25: {3,3}
30: {1,2,3}
34: {1,7}
42: {1,2,4}
45: {2,2,3}
62: {1,11}
63: {2,2,4}
66: {1,2,5}
75: {2,3,3}
82: {1,13}
98: {1,4,4}
99: {2,2,5}
102: {1,2,7}
110: {1,3,5}
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A370814 counts factorizations with choosable divisors, complement
A370813.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]==1&]
A367772
Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.
Original entry on oeis.org
0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0
Non-isomorphic representatives of the a(3) = 23 set-systems:
{{1,2}}
{{1,2,3}}
{{1},{2,3}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
For at least one choice we have
A367902.
These set-systems have ranks
A367909.
Cf.
A059201,
A102896,
A133686,
A283877,
A306445,
A323818,
A355741,
A367770,
A367862,
A367869,
A367901,
A367905.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]
A368409
Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
Offset: 0
Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems:
{1}{2}{12} . {1}{2}{13}{23} {1}{3}{23}{123} {1}{5}{15}{2345}
{1}{2}{3}{123} {1}{4}{14}{234} {2}{13}{23}{123}
{2}{3}{13}{23} {2}{3}{23}{123} {3}{13}{23}{123}
{3}{12}{13}{23} {3}{4}{34}{1234}
{1}{2}{3}{13}{23} {1}{2}{13}{24}{34}
{1}{2}{3}{14}{234}
{1}{2}{3}{23}{123}
{1}{2}{3}{4}{1234}
{1}{3}{4}{14}{234}
{2}{3}{12}{13}{23}
{2}{3}{13}{24}{34}
{2}{3}{14}{24}{34}
{2}{3}{4}{14}{234}
{2}{4}{13}{24}{34}
{3}{4}{13}{24}{34}
{3}{4}{14}{24}{34}
This is the connected case of
A368094.
Allowing repeat edges only: connected case of
A368421 (complement
A368422).
-
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2, {#1}]&,#]]&/@IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]
A368730
Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges, such that it is not possible to choose a different element from each.
Original entry on oeis.org
0, 0, 0, 0, 6, 180, 4560, 117600, 3234588, 96119982, 3092585310, 107542211535, 4029055302855, 162040513972623, 6970457656110039, 319598974394563500, 15568332397812799920, 803271954062642638830, 43778508937914677872788, 2513783434620146896920843
Offset: 0
The a(4) = 6 set-systems:
{{1},{2},{1,2},{3,4}}
{{1},{3},{1,3},{2,4}}
{{1},{4},{1,4},{2,3}}
{{2},{3},{1,4},{2,3}}
{{2},{4},{1,3},{2,4}}
{{3},{4},{1,2},{3,4}}
The case of a unique choice appears to be
A000272.
The version without the choice condition is
A368597, non-covering
A014068.
The complement appears to be
A333331.
Allowing any number of edges of any size gives
A367903, ranks
A367907.
Allowing any number of non-singletons gives
A367868, non-covering
A367867.
A000085 counts set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]
A368924
Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
1 9 6 1
15 68 48 12 1
222 720 510 150 20 1
3670 9738 6825 2180 360 30 1
68820 159628 110334 36960 6895 735 42 1
Row n = 3 counts the following loop-graphs:
{{1,2},{1,3},{2,3}} {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
Cf.
A000169,
A057500,
A062740,
A129271,
A133686,
A322661,
A367869,
A367902,
A368601,
A368835,
A368836,
A368927.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
-
T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
{ my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024
A369145
Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).
Original entry on oeis.org
1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0
The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
{} {} {} {}
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{1,2}} {{1},{1,2}}
{{1},{2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1,2},{1,3},{2,3}}
Without the choice condition we get
A000666, labeled
A006125 (shifted left).
The complement for exactly n edges and no loops is
A369201, labeled
A369143.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]
A370640
Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.
Original entry on oeis.org
1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160, 53329, 66993, 82811, 101963, 124381, 151286, 151286, 324695, 526866, 764438, 1038089, 1358129, 1725921, 2154668, 2640365, 3202985
Offset: 0
The a(0) = 1 through a(6) = 17 subsets:
{} {1} {1,2} {1,2} {1,2,4} {1,2,4} {1,2,4}
{1,3} {1,3,4} {1,2,5} {1,2,5}
{2,3} {2,3,4} {1,3,4} {1,2,6}
{1,3,5} {1,3,4}
{2,3,4} {1,3,5}
{2,3,5} {1,3,6}
{2,4,5} {1,4,6}
{3,4,5} {1,5,6}
{2,3,4}
{2,3,5}
{2,3,6}
{2,4,5}
{2,5,6}
{3,4,5}
{3,4,6}
{3,5,6}
{4,5,6}
The a(0) = 1 through a(6) = 17 set-systems:
{1} {1}{2} {1}{2} {1}{2}{3} {1}{2}{3} {1}{2}{3}
{1}{12} {1}{12}{3} {1}{12}{3} {1}{12}{3}
{2}{12} {2}{12}{3} {1}{2}{13} {1}{2}{13}
{2}{12}{3} {1}{2}{23}
{2}{3}{13} {1}{3}{23}
{1}{12}{13} {2}{12}{3}
{12}{3}{13} {2}{3}{13}
{2}{12}{13} {1}{12}{13}
{1}{12}{23}
{1}{13}{23}
{12}{3}{13}
{12}{3}{23}
{2}{12}{13}
{2}{12}{23}
{2}{13}{23}
{3}{13}{23}
{12}{13}{23}
The case of a unique choice is
A370638.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
-
lista(nn) = my(b, m=Map(Mat([[[]], 1])), t, u, v, w, z); for(n=0, nn, t=Mat(m)~; b=Vecrev(binary(n)); u=select(i->b[i], [1..#b]); for(i=1, #t, v=t[1, i]; w=List([]); for(j=1, #v, for(k=1, #u, if(!setsearch(v[j], u[k]), listput(w, setunion(v[j], [u[k]]))))); w=Set(w); if(#w, z=0; mapisdefined(m, w, &z); mapput(m, w, z+t[2, i]))); print1(mapget(m, [[1..#b]]), ", ")); \\ Jinyuan Wang, Mar 28 2025
Comments