cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A153806 Strobogrammatic cyclops numbers.

Original entry on oeis.org

0, 101, 609, 808, 906, 11011, 16091, 18081, 19061, 61019, 66099, 68089, 69069, 81018, 86098, 88088, 89068, 91016, 96096, 98086, 99066, 1110111, 1160911, 1180811, 1190611, 1610191, 1660991, 1680891, 1690691, 1810181, 1860981
Offset: 1

Views

Author

Omar E. Pol, Jan 15 2009

Keywords

Comments

Intersection of A000787 and A134808.

Examples

			1680891 is a member because it is the same upside down (A000787) and also a cyclops number (A134808).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And[OddQ@ Length@#, Part[#, Ceiling[Length[#]/2]] == 0, Times @@ Boole@ Map[MemberQ[{0, 1, 6, 8, 9}, #] &, Union@ #] == 1, Count[#, 0] == 1, (Take[#, Floor[Length[#]/2]] /. {6 -> 9, 9 -> 6}) ==
    Reverse@ Take[#, -Floor[Length[#]/2]]] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jul 05 2016 *)
  • Python
    import sys
    f = open('b153806.txt', 'w')
    i = 1
    n = 0
    a = [""]
    r = [""]  #reversed strobogrammatically
    while True:
        for x,y in zip(a,r):
            f.write(str(i)+" "+x+"0"+y+"\n")
            i += 1
            if i>20000:
                f.close()
                sys.exit()
        a = sum([[x+"1",x+"6",x+"8",x+"9"] for x in a],[])
        r = sum([["1"+x,"9"+x,"8"+x,"6"+x] for x in r],[])
    # Kenny Lau, Jul 05 2016

Extensions

Extended beyond 11011 by R. J. Mathar, Jan 17 2009

A160717 Cyclops triangular numbers.

Original entry on oeis.org

0, 105, 406, 703, 903, 11026, 13041, 14028, 15051, 27028, 36046, 41041, 43071, 46056, 61075, 66066, 75078, 77028, 83028, 85078, 93096, 1110795, 1130256, 1160526, 1180416, 1250571, 1290421, 1330896, 1350546, 1360425, 1380291
Offset: 1

Views

Author

Omar E. Pol, Jun 08 2009

Keywords

Comments

Triangular numbers (A000217) that are also cyclops numbers (A134808).

Examples

			105 is in the sequence since it is both a triangular number (105 = 1 + 2 + ... + 14) and a Cyclops number (number of digits is odd, and the only zero is the middle digit). - _Michael B. Porter_, Jul 08 2016
		

Crossrefs

Programs

  • Maple
    count:= 1: A[1]:= 0:
    for d from 1 to 3 do
      for x from 0 to 9^d-1 do
        L:= convert(x+9^d,base,9);
        X:= add((L[i]+1)*10^(i-1),i=1..d);
        for y from 0 to 9^d-1 do
          L:= convert(y+9^d,base,9);
          Y:= add((L[i]+1)*10^(i-1),i=1..d);
          Z:= Y + 10^(d+1)*X;
          if issqr(1+8*Z) then
            count:= count+1;
            A[count]:= Z;
          fi
    od od od:
    seq(A[i],i=1..count); # Robert Israel, Jul 08 2016
  • Mathematica
    cyclopsQ[n_] := Block[{id=IntegerDigits@n,lg=Floor[Log[10,n]+1]}, Count[id,0]==1 && OddQ@lg && id[[(lg+1)/2]]==0]; lst = {0}; Do[t = n (n + 1)/2; If[ cyclopsQ@t, AppendTo[lst, t]], {n, 0, 1670}]; lst (* Robert G. Wilson v, Jun 09 2009 *)
    cyclpsQ[n_]:=With[{len=IntegerLength[n]},OddQ[len]&&DigitCount[n,10,0]==1&&IntegerDigits[n][[(len+1)/2]]==0]; Join[{0},Select[ Accumulate[ Range[2000]],cyclpsQ]] (* Harvey P. Dale, Nov 05 2024 *)

Extensions

More terms from Robert G. Wilson v, Jun 09 2009
Offset and b-file changed by N. J. A. Sloane, Jul 27 2016

A239589 Numbers whose squares are cyclops numbers.

Original entry on oeis.org

0, 105, 138, 145, 155, 179, 195, 205, 217, 226, 241, 243, 255, 257, 259, 274, 295, 305, 1054, 1068, 1082, 1091, 1114, 1127, 1136, 1158, 1162, 1175, 1192, 1196, 1221, 1229, 1233, 1237, 1261, 1269, 1273, 1277, 1281, 1308, 1323, 1327, 1338, 1364, 1375, 1386
Offset: 1

Views

Author

Colin Barker, Mar 24 2014

Keywords

Examples

			138 is in the sequence because 138^2 = 19044, which is a cyclops number.
		

Crossrefs

Programs

  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 2000, if(is_cyclops(n^2), s=concat(s, n))); s

A239587 Cubes that are cyclops numbers.

Original entry on oeis.org

0, 74088, 1520875, 1560896, 1860867, 2460375, 4330747, 4410944, 7880599, 123505992, 144703125, 172808693, 177504328, 179406144, 191102976, 194104539, 211708736, 232608375, 241804367, 264609288, 288804781, 295408296, 335702375, 338608873, 368601813, 374805361
Offset: 1

Views

Author

Colin Barker, Mar 24 2014

Keywords

Comments

Intersection of A000578 (Cubes) and A134808 (Cyclops numbers).

Crossrefs

Programs

  • Mathematica
    cyclpsQ[n_]:=With[{len=IntegerLength[n]},OddQ[len]&&DigitCount[n,10,0]==1&&IntegerDigits[n][[(len+1)/2]]==0]; Join[{0},Select[ Range[ 800]^3,cyclpsQ]] (* Harvey P. Dale, Nov 05 2024 *)
  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 2000, if(is_cyclops(n^3), s=concat(s, n^3))); s

Formula

a(n) = A239590(n)^3.

A239588 Fourth powers that are cyclops numbers.

Original entry on oeis.org

0, 7890481, 9150625, 623201296, 981506241, 17363069361, 18945044881, 28813025536, 33871089681, 38167092496, 45954068161, 89526025681, 95565066496, 1421970391296, 1551160647936, 1736870953216, 3941340648961, 4771970346256, 5281980641536, 5436960129441
Offset: 1

Views

Author

Colin Barker, Mar 24 2014

Keywords

Comments

Intersection of A000583 (Fourth powers) and A134808 (Cyclops numbers).

Crossrefs

Programs

  • Mathematica
    cn4Q[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn]; OddQ[ len] && idn[[(len+1)/2]]==0&&DigitCount[n,10,0]==1]; Select[Range[0,2000]^4, cn4Q] (* Harvey P. Dale, Dec 20 2015 *)
  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 2000, if(is_cyclops(n^4), s=concat(s, n^4))); s

Formula

a(n) = A239591(n)^4.

A239590 Numbers whose cubes are cyclops numbers.

Original entry on oeis.org

0, 42, 115, 116, 123, 135, 163, 164, 199, 498, 525, 557, 562, 564, 576, 579, 596, 615, 623, 642, 661, 666, 695, 697, 717, 721, 724, 748, 788, 806, 827, 886, 945, 961, 994, 2272, 2274, 2319, 2325, 2329, 2391, 2438, 2512, 2529, 2537, 2545, 2617, 2637, 2654
Offset: 1

Views

Author

Colin Barker, Mar 24 2014

Keywords

Examples

			123 is in the sequence because 123^3 = 1860867, which is a cyclops number.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[0,3000],OddQ[IntegerLength[#^3]]&&DigitCount[#^3,10,0]==1&&IntegerDigits[#^3][[(IntegerLength[ #^3]+ 1)/2]] == 0&]] (* Harvey P. Dale, Nov 05 2024 *)
  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 3000, if(is_cyclops(n^3), s=concat(s, n))); s

A239591 Numbers whose fourth powers are cyclops numbers.

Original entry on oeis.org

0, 53, 55, 158, 177, 363, 371, 412, 429, 442, 463, 547, 556, 1092, 1116, 1148, 1409, 1478, 1516, 1527, 1612, 1622, 1633, 1692, 1694, 1724, 1738, 1754, 3262, 3263, 3276, 3283, 3338, 3362, 3366, 3402, 3436, 3464, 3468, 3473, 3512, 3538, 3631, 3723, 3724, 3833
Offset: 1

Views

Author

Colin Barker, Mar 24 2014

Keywords

Examples

			158 is in the sequence because 158^4 = 623201296, which is a cyclops number.
		

Crossrefs

Programs

  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 5000, if(is_cyclops(n^4), s=concat(s, n))); s

A135627 Perfect numbers minus 1.

Original entry on oeis.org

5, 27, 495, 8127, 33550335, 8589869055, 137438691327, 2305843008139952127, 2658455991569831744654692615953842175, 191561942608236107294793378084303638130997321548169215
Offset: 1

Views

Author

Omar E. Pol, Nov 27 2007

Keywords

Comments

Conjecture: every odd prime is a factor of at least one number in this sequence. - J. Lowell, Apr 17 2014
a(n) written in base 2 is A138831(n) which is also a member of A138148 (cyclops numbers with binary digits only), assuming there are no odd perfect numbers. - Omar E. Pol, Oct 24 2016 [clarified on Nov 03 2018].

Crossrefs

Programs

Formula

a(n) = A000396(n) - 1.

A153807 Strobogrammatic cyclops primes.

Original entry on oeis.org

101, 16091, 1160911, 1180811, 1190611, 1690691, 1880881, 1960961, 1990661, 6110119, 6610199, 6860989, 166906991, 168101891, 169609691, 188906881, 189808681, 196906961, 199609661, 616906919, 661609199, 666101999, 668609899
Offset: 1

Views

Author

Omar E. Pol, Jan 15 2009

Keywords

Comments

Primes in A153806.

Crossrefs

Extensions

Extended by Ray Chandler, May 20 2009

A239828 Cyclops numbers which are squares of cyclops numbers.

Original entry on oeis.org

0, 11025, 42025, 93025, 121308196, 121506529, 121903681, 122301481, 144408289, 144504441, 145106116, 145805625, 145902241, 169702729, 169806961, 171505216, 196308121, 196504324, 197205849, 197908624, 198105625, 198302724, 256608361, 256704484, 257409936
Offset: 1

Views

Author

Colin Barker, Mar 27 2014

Keywords

Comments

Subsequence of A160711.

Examples

			145106116 is in the sequence because 145106116 = 12046^2, and both 145106116 and 12046 are cyclops numbers.
		

Crossrefs

Programs

  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 100000, if(is_cyclops(n) && is_cyclops(n^2), s=concat(s, n^2))); s

Formula

a(n) = A239827(n)^2.
Previous Showing 11-20 of 41 results. Next