cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138148 Cyclops numbers with binary digits only.

Original entry on oeis.org

0, 101, 11011, 1110111, 111101111, 11111011111, 1111110111111, 111111101111111, 11111111011111111, 1111111110111111111, 111111111101111111111, 11111111111011111111111, 1111111111110111111111111, 111111111111101111111111111, 11111111111111011111111111111
Offset: 0

Views

Author

Omar E. Pol, Mar 18 2008

Keywords

Comments

All members are palindromes A002113. The first five members are mentioned in A129868.
Also, binary representation of A129868.
a(A090748(n)) is equal to A138831(n), the n-th perfect number minus 1, written in base 2.
Except for the first term (replace 0 with 1) the binary representation of the n-th iteration of the elementary cellular automaton, Rule 219 starting with a single ON (black) cell. - Robert Price, Feb 21 2016
a(1) = 101 is only prime number in this sequence since a(n) = (10^(n+1)+1)*(10^n-1)/9. - Altug Alkan, May 11 2016

Examples

			n ........ a(n) .... A129868(n): value of a(n) read in base 2.
0 ......... 0 ......... 0
1 ........ 101 ........ 5
2 ....... 11011 ....... 27
3 ...... 1110111 ...... 119
4 ..... 111101111 ..... 495
5 .... 11111011111 .... 2015
6 ... 1111110111111 ... 8127
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cyclops numbers: A134808. Cf. A002113, A129868.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).

Programs

Formula

From Colin Barker, Feb 21 2013: (Start)
a(n) = (-1-9*10^n+10^(1+2*n))/9.
G.f.: x*(200*x-101) / ((x-1)*(10*x-1)*(100*x-1)). (End)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2. - Wesley Ivan Hurt, Dec 08 2015
a(n) = A000533(n+1)*A002275(n). - Altug Alkan, May 12 2016
E.g.f.: (-1 - 9*exp(9*x) + 10*exp(99*x))*exp(x)/9. - Ilya Gutkovskiy, May 12 2016
a(n) = A002275(2n+1) - A011557(n). - M. F. Hasler, Feb 08 2020

Extensions

More terms from Omar E. Pol, Feb 09 2020

A002503 Numbers k such that binomial(2*k,k) is divisible by (k+1)^2.

Original entry on oeis.org

5, 14, 27, 41, 44, 65, 76, 90, 109, 125, 139, 152, 155, 169, 186, 189, 203, 208, 209, 219, 227, 230, 237, 265, 275, 298, 307, 311, 314, 321, 324, 329, 344, 377, 413, 419, 428, 434, 439, 441, 449, 458, 459, 467, 475
Offset: 1

Views

Author

Keywords

Comments

From Amiram Eldar, Mar 28 2021: (Start)
Balakram (1929) proved that:
1) This sequence is infinite.
2) If m is an even perfect number (A000396) then m-1 is a term.
3) If m = p*q - 1, where p and q are primes, and (3/2)*p < q < 2*p, then m is a term.
4) m is a term if and only if Sum_{k>=1} floor(2*m/p^k) >= 2 * Sum_{k>=1} floor((m+1)/p^k), for all primes p. (End)

References

  • Hoon Balakram, On the values of n which make (2n)!/(n+1)!(n+1)! an integer, J. Indian Math. Soc., Vol. 18 (1929), pp. 97-100.
  • Thomas Koshy, Catalan numbers with applications, Oxford University Press, 2008, pp. 69-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Positions of zeros in A065350.
Equals A067348(n+2)/2 - 1.

Programs

  • Haskell
    import Data.List (elemIndices)
    a002503 n = a002503_list !! (n-1)
    a002503_list = map (+ 1) $ elemIndices 0 a065350_list
    -- Reinhard Zumkeller, Sep 16 2014
    
  • Mathematica
    Select[Range[500],Divisible[Binomial[2#,#],(#+1)^2]&] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    isok(n) = binomial(2*n, n) % (n+1)^2 == 0; \\ Michel Marcus, Jan 11 2016

Formula

A065350(a(n)) = 0. - Reinhard Zumkeller, Sep 16 2014

Extensions

Balakram reference corrected by T. D. Noe, Jan 16 2007

A138831 n-th perfect number minus 1, written in base 2.

Original entry on oeis.org

101, 11011, 111101111, 1111110111111, 1111111111110111111111111, 111111111111111101111111111111111, 1111111111111111110111111111111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008, Apr 09 2008, Apr 14 2008

Keywords

Comments

Subset of A138148, cyclops numbers with binary digits, only.
Subset of A002113, palindromes in base 10.
a(n) has 2*A090748(n) digits 1.
The number of digits of a(n) is 2*A000043(n)-1, equal to A133033(n), the number of proper divisors of n-th perfect number.
a(n) = (A135627(n) written in base 2).

Examples

			n ... A000396(n) - 1 = A135627(n) ............. a(n)
1 ............ 6 - 1 = ...... 5 ............... 101
2 ........... 28 - 1 = ..... 27 .............. 11011
3 .......... 496 - 1 = .... 495 ............ 111101111
4 ......... 8128 - 1 = ... 8127 .......... 1111110111111
5 ..... 33550336 - 1 = 33550335 .... 1111111111110111111111111
		

Crossrefs

Formula

a(n) = A138148(A090748(n)).

A135629 Perfect numbers plus 1.

Original entry on oeis.org

7, 29, 497, 8129, 33550337, 8589869057, 137438691329, 2305843008139952129, 2658455991569831744654692615953842177, 191561942608236107294793378084303638130997321548169217
Offset: 1

Views

Author

Omar E. Pol, Nov 27 2007

Keywords

Crossrefs

Programs

Formula

a(n) = A000396(n) + 1.
Showing 1-4 of 4 results.