A136505
a(n) = binomial(2^n + 1, n).
Original entry on oeis.org
1, 3, 10, 84, 2380, 237336, 82598880, 99949406400, 422825581068000, 6318976181520699840, 337559127276933693852160, 65182103393445184131620004864, 45946437874792132748338425828443136
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0), this sequence (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136505:= n-> binomial(2^n+1,n); seq(A136505(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+1,n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
{a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))*log(1+2^i*x +x*O(x^n))^i/i!),n)}
-
[binomial(2^n +1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A136506
a(n) = binomial(2^n + 2, n).
Original entry on oeis.org
1, 4, 15, 120, 3060, 278256, 90858768, 105637584000, 436355999662176, 6431591598617108352, 340881559632021623909760, 65533747894341651530074060800, 46081376018330435634530315478453248
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1), this sequence (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +2, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A136506:= n-> binomial(2^n+2,n); seq(A136506(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+2,n],{n,0,20}] (* Harvey P. Dale, Jun 20 2011 *)
-
{a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))^2*log(1+2^i*x +x*O(x^n))^i/i!),n)}
-
[binomial(2^n +2, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A054780
Number of n-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 3, 32, 1225, 155106, 63602770, 85538516963, 386246934638991, 6001601072676524540, 327951891446717800997416, 64149416776011080449232990868, 45546527789182522411309599498741023, 118653450898277491435912500458608964207578
Offset: 0
From _Gus Wiseman_, Dec 19 2023: (Start)
Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are:
{1}{2}{3} {1}{2}{13} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{23} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{3}{12} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{23} {1}{12}{23} {2}{12}{123}
{2}{3}{12} {1}{13}{23} {2}{13}{123}
{2}{3}{13} {2}{3}{123} {2}{23}{123}
{2}{12}{13} {3}{12}{123}
{2}{12}{23} {3}{13}{123}
{2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
(End)
Covers with any number of edges are counted by
A003465, unlabeled
A055621.
Connected graphs of this type are counted by
A057500, unlabeled
A001429.
This is the covering case of
A136556.
These set-systems have ranks
A367917.
-
Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *)
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]],{n}],Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
-
a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024
A132683
a(n) = binomial(2^n + n, n).
Original entry on oeis.org
1, 3, 15, 165, 4845, 435897, 131115985, 138432467745, 525783425977953, 7271150092378906305, 368539102493388126164865, 68777035446753808820521420545, 47450879627176629761462147774626305
Offset: 0
From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 3*x + 15*x^2 + 165*x^3 + 4845*x^4 + 435897*x^5 + ...
A(x) = 1/(1-x) - log(1-2x)/(1-2x) + log(1-4x)^2/((1-4x)*2!) - log(1-8x)^3/((1-8x)*3!) +- ... (End)
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1), this sequence (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132683:= n-> binomial(2^n +n,n); seq(A132683(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+n, n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
a(n)=binomial(2^n+n,n)
-
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
[binomial(2^n +n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132684
a(n) = binomial(2^n + n + 1, n).
Original entry on oeis.org
1, 4, 21, 220, 5985, 501942, 143218999, 145944307080, 542150225230185, 7398714129087308170, 372134605932348010322571, 69146263065062394421802892300, 47589861944854471977019273909187085
Offset: 0
From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 4*x + 21*x^2 + 220*x^3 + 5985*x^4 + 501942*x^5 +...
A(x) = 1/(1-x)^2 - log(1-2x)/(1-2x)^2 + log(1-4x)^2/((1-4x)^2*2!) - log(1-8x)^3/((1-8x)^2*3!) +- ... (End)
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0), this sequence (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n+1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132684:= n-> binomial(2^n +n+1, n); seq(A132684(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+n+1,n],{n,0,20}] (* Harvey P. Dale, Nov 10 2011 *)
-
a(n)=binomial(2^n+n+1,n)
-
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))^2*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
[binomial(2^n +n+1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132685
a(n) = binomial(2^n + 2*n, n).
Original entry on oeis.org
1, 4, 28, 364, 10626, 850668, 218618940, 198773423848, 669741609663270, 8493008777332033900, 405943250253048290447028, 72938914603968404495709630360, 49143490709866058459392200362497820
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1), this sequence (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n+2*n,n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132695:= n-> binomial(2^n +2*n,n); seq(A132685(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+2n,n],{n,0,20}] (* Harvey P. Dale, Jun 01 2016 *)
-
a(n)=binomial(2^n+2*n,n)
-
[binomial(2^n+2*n,n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132686
a(n) = binomial(2^n + 2*n + 1, n).
Original entry on oeis.org
1, 5, 36, 455, 12650, 962598, 237093780, 209004408899, 689960224294614, 8639439963148103450, 409865407260324119340236, 73328394245057556170201283726, 49287010273876375495535472789937580
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0), this sequence (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +2*n +1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n +2*n +1, n], {n,0,20}] (* G. C. Greubel, Mar 13 2021 *)
-
a(n)=binomial(2^n+2*n+1,n)
-
[binomial(2^n +2*n +1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
A132687
a(n) = binomial(2^n + 3*n - 1, n).
Original entry on oeis.org
1, 4, 36, 560, 17550, 1370754, 324540216, 267212177232, 822871715492970, 9728874233306696390, 442491588454024774291770, 76919746769405407508866898400, 50743487119356450255156023756871000
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1), this sequence (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +3*n -1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n+3n-1,n],{n,0,20}] (* Harvey P. Dale, Sep 07 2017 *)
-
a(n)=binomial(2^n+3*n-1,n)
-
[binomial(2^n +3*n -1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
A132688
a(n) = binomial(2^n + 3*n, n).
Original entry on oeis.org
1, 5, 45, 680, 20475, 1533939, 350161812, 280384608504, 847073824772175, 9894081531608130857, 446730013630787463700695, 77328499046923986969058944720, 50891283683781760304442885961988100
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1), this sequence (3,0),
A132689 (3,1).
-
[Binomial(2^n +3*n, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n+3n,n],{n,0,20}] (* Harvey P. Dale, Oct 30 2018 *)
-
a(n)=binomial(2^n+3*n,n)
-
[binomial(2^n +3*n, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
A132689
a(n) = binomial(2^n + 3*n + 1, n).
Original entry on oeis.org
1, 6, 55, 816, 23751, 1712304, 377447148, 294109729200, 871896500955975, 10061777828754031380, 451004941990890693018405, 77739225019650285306412710240, 51039474754930845750609669420261300
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0), this sequence (3,1).
-
[Binomial(2^n+3*n+1, n) : n in [0..15]]; // Wesley Ivan Hurt, Nov 20 2014
-
A132689:=n->binomial(2^n+3*n+1, n): seq(A132689(n), n=0..15); # Wesley Ivan Hurt, Nov 20 2014
-
Table[Binomial[2^n +3n +1, n], {n, 0, 15}] (* Wesley Ivan Hurt, Nov 20 2014 *)
-
a(n)=binomial(2^n+3*n+1,n)
-
[binomial(2^n +3*n+1, n) for n in (0..15)] # G. C. Greubel, Feb 15 2021
Comments