cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A324323 Regular triangle read by rows where T(n,k) is the number of topologically connected set partitions of {1,...,n} with k blocks, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 16, 4, 0, 0, 0, 0, 1, 42, 42, 0, 0, 0, 0, 0, 1, 99, 258, 27, 0, 0, 0, 0, 0, 1, 219, 1222, 465, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...},{...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			Triangle begins:
    1
    0    1
    0    1    0
    0    1    0    0
    0    1    1    0    0
    0    1    5    0    0    0
    0    1   16    4    0    0    0
    0    1   42   42    0    0    0    0
    0    1   99  258   27    0    0    0    0
    0    1  219 1222  465    0    0    0    0    0
Row n = 6 counts the following set partitions:
  {{123456}}  {{1235}{46}}  {{13}{25}{46}}
              {{124}{356}}  {{14}{25}{36}}
              {{1245}{36}}  {{14}{26}{35}}
              {{1246}{35}}  {{15}{24}{36}}
              {{125}{346}}
              {{13}{2456}}
              {{134}{256}}
              {{1345}{26}}
              {{1346}{25}}
              {{135}{246}}
              {{1356}{24}}
              {{136}{245}}
              {{14}{2356}}
              {{145}{236}}
              {{146}{235}}
              {{15}{2346}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]<=1&&Length[#]==k&]],{n,0,6},{k,0,n}]

A326338 Number of simple graphs with vertices {1..n} whose weakly nesting edges are connected.

Original entry on oeis.org

1, 1, 2, 7, 48, 781, 27518
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d. A graph has its weakly nesting edges connected if the graph whose vertices are the edges and whose edges are weakly nesting pairs of edges is connected.

Crossrefs

The inverse binomial transform is the covering case A326337.
The non-weak case is A326330.

Programs

  • Mathematica
    wknXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[Union[List/@#,Select[Subsets[#,{2}],wknXQ]]]]<=1&]],{n,0,5}]

A136652 L.g.f.: A(x) = log( Sum_{n>=0} 2^[n(n-1)/2]*x^n ).

Original entry on oeis.org

1, 3, 19, 223, 4771, 190023, 14441659, 2130394591, 616038609331, 351153716973303, 395928966997611499, 885010943452285951183, 3928049212346654960720611, 34658088824057172975437120103, 608435145369338712372672919898779, 21266998855813018955669706360248449471
Offset: 1

Views

Author

Paul D. Hanna, Jan 15 2008

Keywords

Examples

			L.g.f.: A(x) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
A(x) = log(1 + x + 2x^2 + 8x^3 + 64x^4 + 1024x^5 +...+ 2^(n(n-1)/2)*x^n +...).
		

Crossrefs

Programs

  • Mathematica
    max = 14; s = Log[Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}]] + O[x]^(max+1); CoefficientList[s, x]*Range[0, max] // Rest (* Jean-François Alcover, Sep 03 2017 *)
  • PARI
    a(n)=n*polcoeff(log(sum(k=0,n,2^(k*(k-1)/2)*x^k +x*O(x^n))),n)

A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 35, 147, 600, 2418
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 35 edge-sets:
  {}  {12}  {12,13}  {12,13,14}  {12,13,14,34}
      {13}  {12,14}  {12,13,23}  {12,13,23,34}
      {14}  {12,23}  {12,13,34}  {12,14,24,34}
      {23}  {12,24}  {12,14,24}  {12,23,24,34}
      {24}  {13,14}  {12,14,34}
      {34}  {13,23}  {12,23,24}
            {13,34}  {12,23,34}
            {14,24}  {12,24,34}
            {14,34}  {13,14,34}
            {23,24}  {13,23,34}
            {23,34}  {14,24,34}
            {24,34}  {23,24,34}
		

Crossrefs

The inverse binomial transform is the covering case A326339.
Covering graphs with no crossing or nesting edges are A326329.
Connected simple graphs are A001349.
Graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjecture: a(n) = A052161(n - 2) + 1.

A326341 Number of minimal topologically connected chord graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 22, 119
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b. A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(4) = 1 through a(6) = 22 edge-sets:
  {13,24}  {13,14,25}  {13,25,46}
           {13,24,25}  {14,25,36}
           {13,24,35}  {14,26,35}
           {14,24,35}  {15,24,36}
           {14,25,35}  {13,14,15,26}
                       {13,14,25,26}
                       {13,15,24,26}
                       {13,15,26,46}
                       {13,24,25,26}
                       {13,24,25,36}
                       {13,24,26,35}
                       {13,24,35,36}
                       {13,24,35,46}
                       {14,15,26,36}
                       {14,24,35,36}
                       {14,24,35,46}
                       {14,25,35,46}
                       {15,24,35,46}
                       {15,25,35,46}
                       {15,25,36,46}
                       {15,26,35,46}
                       {15,26,36,46}
		

Crossrefs

The non-minimal case is A324327.
Minimal covers are A053530.
Topologically connected graphs are A324327 (covering) or A324328 (all).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[fasmin[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]]],{n,0,5}]

A136654 G.f.: A(x) = (1/x)*Series_Reversion( x/Sum_{k=0..n} 2^[k(k-1)/2]*x^k ).

Original entry on oeis.org

1, 1, 3, 15, 117, 1565, 41663, 2378147, 286991465, 71261033273, 35889915535835, 36421251158141399, 74222529448186797341, 303194457634544530959125, 2480120130065258782050157847, 40601998283406419045206334661611
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 117*x^4 + 1565*x^5 + 41663*x^6 +...
Let F(x) = 1 + x + 2x^2 + 8x^3 + 64x^4 + 1024x^5 +...+ 2^(n(n-1)/2)*x^n +..
then A(x) = F(x*A(x)), A(x/F(x)) = F(x).
a(n) = coefficient of x^n in F(x)^(n+1)/(n+1),
as can be seen by the main diagonal in the array of
coefficients in the initial powers of F(x):
F^1: [(1), 1, 2, 8, 64, 1024, 32768, 2097152, 268435456,...;
F^2: [1, (2), 5, 20, 148, 2208, 67904, 4264960, 541216768,...;
F^3: [1, 3, (9), 37, 258, 3588, 105704, 6507552, 818458752,...;
F^4: [1, 4, 14, (60), 401, 5208, 146520, 8829536, 1100282640,...;
F^5: [1, 5, 20, 90, (585), 7121, 190770, 11236080, 1386816800,...;
F^6: [1, 6, 27, 128, 819, (9390), 238949, 13733004, 1678197564,...;
F^7: [1, 7, 35, 175, 1113, 12089, (291641), 16326885, 1974570178,...;
F^8: [1, 8, 44, 232, 1478, 15304, 349532, (19025176), 2276089889,...;
F^9: [1, 9, 54, 300, 1926, 19134, 413424, 21836340, (2582923185),...;
dividing each diagonal term in row n by (n+1) gives a(n) for n>=0.
The diagonal above the main diagonal gives coefficients of l.g.f.:
log(A(x)) = x + 5*x^2/2 + 37*x^3/3 + 401*x^4/4 + 7121*x^5/5 +...
		

Crossrefs

Cf. A136653.

Programs

  • Mathematica
    max = 15; s = x/Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}] + O[x]^(max+2);(1/x)*InverseSeries[s] + O[x]^(max+1) // CoefficientList[#, x]& (* Jean-François Alcover, Sep 03 2017 *)
  • PARI
    a(n)=polcoeff(1/x*serreverse(x/sum(k=0,n,2^(k*(k-1)/2)*x^k +x*O(x^n))),n)

Formula

a(n) = coefficient of x^n in [Sum_{k=0..n} 2^(k(k-1)/2)*x^k]^(n+1)/(n+1).

A326350 Number of non-nesting connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 0, 1, 4, 23, 157, 1182
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The inverse binomial transform is the non-covering case A326351.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A326351 Number of non-nesting connected simple graphs on a subset of {1..n}.

Original entry on oeis.org

1, 1, 2, 8, 46, 323, 2565
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The binomial transform is the covering case A326350.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				
Previous Showing 11-18 of 18 results.