cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A287479 Expansion of g.f. (x + x^2)/(1 + 3*x^2).

Original entry on oeis.org

0, 1, 1, -3, -3, 9, 9, -27, -27, 81, 81, -243, -243, 729, 729, -2187, -2187, 6561, 6561, -19683, -19683, 59049, 59049, -177147, -177147, 531441, 531441, -1594323, -1594323, 4782969, 4782969, -14348907, -14348907, 43046721, 43046721, -129140163, -129140163, 387420489
Offset: 0

Views

Author

Keywords

Comments

This is the inverse binomial transform of A157241.
Successive differences of A157241 begin:
0, 1, 3, 3, -5, -21, -21, 43, 171, 171, ... = A157241
1, 2, 0, -8, -16, 0, 64, 128, 0, -512, ... = A088138
1, -2, -8, -8, 16, 64, 64, -128, -512, -512, ... = A138230
-3, -6, 0, 24, 48, 0, -192, -384, 0, 1536, ...
-3, 6, 24, 24, -48, -192, -192, 384, 1536, 1536, ...
9, 18, 0, -72, -144, 0, 576, 1152, 0, -4608, ...
9, -18, -72 -72, 144, 576, 576, -1152, -4608, -4608, ...
...
a(n) is the n-th term of the first column.
Successive differences of a(n) begin:
0, 1, 1, -3, -3, 9, 9, -27, -27, 81, ...
1, 0, -4, 0, 12, 0, -36, 0, 108, 0, ...
-1, -4, 4, 12, -12, -36, 36, 108, -108, -324, ...
-3, 8, 8, -24, -24, 72, 72, -216, -216, 648, ...
11, 0, -32, 0, 96, 0, -288, 0, 864, 0, ...
-11, -32, 32, 96, -96, -288, 288, 864, -864, -2592, ...
-21, 64, 64, -192, -192, 576, 576, -1728, -1728, 5184, ...
85, 0, -256, 0, 768, 0, -2304, 0, 6912, 0, ...
...
First column appears to be a subsequence of Jacobsthal numbers A001045 (the trisection A082311 is missing), second column is A104538, and third column is A137717.
a(n) = A128019(n-2) for n > 2. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]]
    (* or, computation from b = A157241 : *)
    b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]]
  • PARI
    concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ Felix Fröhlich, Oct 23 2018

Formula

a(n) = -3*a(n-2) for n > 2.
E.g.f.: (1 - cos(sqrt(3)*x) + sqrt(3)*sin(sqrt(3)*x))/3. - Stefano Spezia, Jul 15 2024

A344914 T(n, k) = 2^(3*k)*(n - 3*k)!, for n >= 0 and 0 <= k <= floor(n/3). Triangle read by rows.

Original entry on oeis.org

1, 1, 2, 6, 8, 24, 8, 120, 16, 720, 48, 64, 5040, 192, 64, 40320, 960, 128, 362880, 5760, 384, 512, 3628800, 40320, 1536, 512, 39916800, 322560, 7680, 1024, 479001600, 2903040, 46080, 3072, 4096, 6227020800, 29030400, 322560, 12288, 4096
Offset: 0

Views

Author

Peter Luschny, Jun 06 2021

Keywords

Examples

			[ 0] 1;
[ 1] 1;
[ 2] 2;
[ 3] 6,         8;
[ 4] 24,        8;
[ 5] 120,       16;
[ 6] 720,       48,      64;
[ 7] 5040,      192,     64;
[ 8] 40320,     960,     128;
[ 9] 362880,    5760,    384,   512;
[10] 3628800,   40320,   1536,  512;
[11] 39916800,  322560,  7680,  1024;
[12] 479001600, 2903040, 46080, 3072, 4096;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> 2^(3*k)*(n-3*k)!: seq(seq(T(n,k), k = 0..n/3), n = 0..13);
  • Mathematica
    Table[2^(3k) (n-3k)!,{n,0,20},{k,0,Floor[n/3]}]//Flatten (* Harvey P. Dale, Feb 13 2022 *)

A319234 T(n, k) is the coefficient of x^k of the polynomial p(n) which is defined as the scalar part of P(n) = Q(x, 1, 1, 1) * P(n-1) for n > 0 and P(0) = Q(1, 0, 0, 0) where Q(a, b, c, d) is a quaternion, triangle read by rows.

Original entry on oeis.org

1, 0, 1, -3, 0, 1, 0, -9, 0, 1, 9, 0, -18, 0, 1, 0, 45, 0, -30, 0, 1, -27, 0, 135, 0, -45, 0, 1, 0, -189, 0, 315, 0, -63, 0, 1, 81, 0, -756, 0, 630, 0, -84, 0, 1, 0, 729, 0, -2268, 0, 1134, 0, -108, 0, 1, -243, 0, 3645, 0, -5670, 0, 1890, 0, -135, 0, 1
Offset: 0

Views

Author

Peter Luschny, Sep 14 2018

Keywords

Comments

The symbol '*' in the name refers to the noncommutative multiplication in Hamilton's division algebra. Traditionally Q(a, b, c, d) is written a + b*i + c*j + d*k.

Examples

			The list of polynomials starts 1, x, x^2 - 3, x^3 - 9*x, x^4 - 18*x^2 + 9, ... and the list of coefficients of the polynomials starts:
[0] [  1]
[1] [  0,    1]
[2] [ -3,    0,    1]
[3] [  0,   -9,    0,     1]
[4] [  9,    0,  -18,     0,   1]
[5] [  0,   45,    0,   -30,   0,    1]
[6] [-27,    0,  135,     0, -45,    0,   1]
[7] [  0, -189,    0,   315,   0,  -63,   0,    1]
[8] [ 81,    0, -756,     0, 630,    0, -84,    0, 1]
[9] [  0,  729,    0, -2268,   0, 1134,   0, -108, 0, 1]
		

Crossrefs

Inspired by the sister sequence A181738 of Roger L. Bagula.
Cf. A254006 (T(n,0) up to sign), A138230 (row sums).

Programs

  • Mathematica
    Needs["Quaternions`"]
    P[x_, 0 ] := Quaternion[1, 0, 0, 0];
    P[x_, n_] := P[x, n] = Quaternion[x, 1, 1, 1] ** P[x, n - 1];
    Table[CoefficientList[P[x, n][[1]], x], {n, 0, 10}] // Flatten
  • Sage
    R. = QQ[]
    K = R.fraction_field()
    H. = QuaternionAlgebra(K, -1, -1)
    def Q(a, b, c, d): return H(a + b*i + c*j + d*k)
    @cached_function
    def P(n):
        return Q(x, 1, 1, 1)*P(n-1) if n > 0 else Q(1, 0, 0, 0)
    def p(n): return P(n)[0].numerator().list()
    flatten([p(n) for n in (0..10)]) # Kudos to William Stein
Previous Showing 11-13 of 13 results.