cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A367170 The number of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 1, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 2, 3, 4, 1, 6, 2, 8, 2, 1, 4, 4, 4, 9, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 2, 4, 2, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Similar sequences: A365401, A365402.

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e+1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 2] + 1, 1));}

Formula

Multiplicative with a(p^e) = A048298(e) + 1.
a(n) = A000005(A367168(n)).
a(n) <= A000005(n), with equality if and only if n is in A138302.

A367171 The sum of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 1, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 4, 31, 42, 1, 56, 30, 72, 32, 1, 48, 54, 48, 91, 38, 60, 56, 6, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 3, 72, 8, 80, 90, 60, 168, 62, 96, 104, 1, 84, 144, 68, 126
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], (p^(e+1)-1)/(p-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1), 1));}

Formula

Multiplicative with a(p^e) = (p^(A048298(e)+1)-1)/(p-1).
a(n) = A000203(A367168(n)).
a(n) <= A000203(n), with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)/zeta(3) = 1.368432... (A306633).

A369933 The maximal exponent in the prime factorization of the exponentially 2^n numbers (A138302).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

Differs from A368473 at n = 1, 32, 89, 126, 159, ... .

Crossrefs

Programs

  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, pow2Q], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
  • PARI
    ispow2(n) = n >> valuation(n, 2) == 1;
    lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(ispow2(vecprod(e)), print1(vecmax(e), ", "))); }

Formula

a(n) = A051903(A138302(n)).
a(n) = 2^A369934(n), for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=1} (2^k * (d(k) - d(k-1)))) / A271727 = 1.40540547368932408503..., where d(k) = Product_{p prime} (1 - 1/p^3 + Sum_{i=2..k} (1/p^(2^i)-1/p^(2^i+1))) for k >= 1, and d(0) = 1/zeta(2).

A370077 The product of exponents of the prime factorization of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    ispow2(n) = n >> valuation(n, 2) == 1;
    a(n) = vecprod(apply(x -> if(ispow2(x), x, 1), factor(n)[, 2]));

Formula

a(n) = A005361(A367168(n)).
a(n) = A006519(A005361(n)).
a(n) = 2^A370078(n).
a(n) = 1 if and only if n is an exponentially odd number (A268335).
a(n) <= A005361(n), with equality if and only if n is an exponentially 2^n-number (A138302).
Multiplicative with a(p^e) = e if e is a power of 2, and 1 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (2^k-1)*(1/p^(2^k) - 1/p^(2^k+1))) = 1.47219167074464124662... .

A385042 The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A367515 at n = 128.
The sum of these divisors is A385043(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353898.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), this sequence (exponentially 2^n), A385044 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := Boole[e == 2^IntegerExponent[e, 2]] + 1; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x == 1<
    				

Formula

Multiplicative with a(p^e) = A209229(e) + 1.
a(n) <= A034444(n), with equality if and only if n is in A138302.
a(n) <= A353898(n), with equality if and only if n is squarefree (A005117).

A365297 a(n) is the smallest number k such that k*n is a number whose prime factorization exponents are all powers of 2 (A138302).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2023

Keywords

Comments

First differs from A270419 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e]] - e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e = logint(n, 2)); if(n == 2^e, 0, 2^(e+1) - n)};
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e)) - e).
a(n) = A356194(n)/n.
a(n) = 1 if and only if n is in A138302.

A376471 Lexicographically earliest strictly increasing sequence of numbers whose partial products are all exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 11, 13, 17, 19, 20, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 208, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2024

Keywords

Comments

All the primes are terms.

Examples

			1 * 2 = 2^1 and 1 = 2^0.
1 * 2 * 3 = 6 = 2^1 * 3^1 and 1 = 2^0.
1 * 2 * 3 * 5 * 6 = 180 = 2^2 * 3^2 * 5^1, 1 = 2^0 and 2 = 2^1.
		

Crossrefs

Disjoint union of A000040 and A376472.
Similar sequences:
Sequence | Partial products are in | Exponents are in
--------------+-------------------------+------------------------
A050376 | A037992 | A000225 \ {0} (2^n-1)
A089237 | A268335 | A005408 (odd numbers)
{1} U A246551 | A246551 | A000290 \ {0} (squares)
this sequence | A138302 | A000079 (powers of 2)

Programs

  • Mathematica
    expPow2Q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &]; a[1] = 1; a[n_] := a[n] = Module[{prod = Times @@ Array[a, n - 1], k = a[n - 1] + 1}, While[! expPow2Q[prod*k], k++]; k]; Array[a, 100]
  • PARI
    ispow2(n) = if(n == 0, 1, n >> valuation(n, 2) == 1);
    lista(pindmax) = {my(pmax = prime(pindmax), v = vector(pindmax), f, pind, prd); print1(1, ", "); for(k = 2, pmax, f = factor(k); pind = apply(x -> primepi(x), f[,1]); for(i = 1, #pind, v[pind[i]] += f[i, 2]); if(vecprod(apply(x -> ispow2(x), v)) > 0, print1(k, ", "), for(i = 1, #pind, v[pind[i]] -= f[i, 2])));}

A386537 Exponent of the highest power of 2 dividing the n-th number whose prime factorization exponents are all powers of 2 (A138302).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    exp2nQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &];
    IntegerExponent[Select[Range[200], exp2nQ], 2]
  • PARI
    isexp2n(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] >> valuation(f[i, 2], 2) > 1, return (0))); 1;}
    list(lim) = for(k = 1, lim, if(isexp2n(k), print1(valuation(k, 2), ", ")));

Formula

a(n) = A007814(A138302(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1 + Sum_{k>=0} (2^k + 1)/2^(2^k)) / (1 + Sum_{k>=0} 1/2^(2^k)) - 1 = 0.70550483007968767769... .

A368540 The smallest unitary divisor d of n such that n/d is a term of A138302.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 125, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

First differs from A368167 at n = 64 and from A367513 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), 1, f[i, 1]^f[i, 2]));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A368540(n): return prod(p**e for p, e in factorint(n).items() if not e or (e&-e)^e) # Chai Wah Wu, Dec 30 2023

Formula

a(n) = n / A367168(n).
Multiplicative with a(p^e) = p^(e-A048298(e)).
a(n) >= 1, with equality if and only if n is in A138302.

A268335 Exponentially odd numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vladimir Shevelev, Feb 01 2016

Keywords

Comments

The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
    Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A268335_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))
    A268335_list = list(islice(A268335_gen(),20)) # Chai Wah Wu, Jun 22 2023

Formula

Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023
Previous Showing 11-20 of 68 results. Next