A207823
Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order).
Original entry on oeis.org
1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
Offset: 0
Triangle begins:
1
4, 1
15, 8, 1
56, 46, 12, 1
209, 232, 93, 16, 1
780, 1091, 592, 156, 20, 1
2911, 4912, 3366, 1200, 235, 24, 1
10864, 21468, 17784, 8010, 2120, 330, 28, 1
40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1
151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
...
Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1
0, 1
0, 4, 1
0, 15, 8, 1
0, 56, 46, 12, 1
0, 209, 232, 93, 16, 1
...
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials:
A207824 (k = 5),
A207823 (k = 4),
A125662 (k = 3),
A078812 (k = 2),
A101950 (k = 1),
A049310 (k = 0),
A104562 (k = -1),
A053122 (k = -2),
A207815 (k = -3),
A159764 (k = -4),
A123967 (k = -5).
-
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
A139277
a(n) = n*(8*n+5).
Original entry on oeis.org
0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0
Cf.
A139271,
A139272,
A139273,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
-
Table[n (8 n + 5), {n, 0, 50}] (* Bruno Berselli, Aug 22 2018 *)
LinearRecurrence[{3,-3,1},{0,13,42},50] (* Harvey P. Dale, Dec 04 2018 *)
-
a(n)=n*(8*n+5) \\ Charles R Greathouse IV, Jun 17 2017
A124029
Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.
Original entry on oeis.org
1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
Offset: 0
Triangle begins as:
1;
4, -1;
15, -8, 1;
56, -46, 12, -1;
209, -232, 93, -16, 1;
780, -1091, 592, -156, 20, -1;
2911, -4912, 3366, -1200, 235, -24, 1;
10864, -21468, 17784, -8010, 2120, -330, 28, -1;
-
m:=12;
R:=PowerSeriesRing(Integers(), m+2);
A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
[A124029(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
-
A123966x := proc(n,x)
local A,r,c ;
A := Matrix(1..n,1..n) ;
for r from 1 to n do
for c from 1 to n do
A[r,c] :=0 ;
if r = c then
A[r,c] := A[r,c]+4 ;
elif abs(r-c)= 1 then
A[r,c] := A[r,c]-1 ;
end if;
end do:
end do:
(-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
end proc;
A123966 := proc(n,k)
coeftayl( A123966x(n,x),x=0,k) ;
end proc:
seq(seq(A123966(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
-
(* Matrix version*)
k = 4;
T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];
Table[M[d], {d,10}]
Table[Det[M[d]], {d,10}]
Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]
Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten
(* Recursive Polynomial form*)
p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
(* Additional program *)
Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
-
def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
Comments