cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A207823 Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 20 2012

Keywords

Comments

Riordan array (1/(1-4*x+x^2), x/(1-4*x+x^2)).
Subtriangle of the triangle given by (0, 4, -1/4, 1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Unsigned version of triangles in A124029 and in A159764.
For 1<=k<=n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3,4} containing k-1 letters equal 4 and avoiding 01. - Milan Janjic, Dec 20 2016

Examples

			Triangle begins:
  1
  4, 1
  15, 8, 1
  56, 46, 12, 1
  209, 232, 93, 16, 1
  780, 1091, 592, 156, 20, 1
  2911, 4912, 3366, 1200, 235, 24, 1
  10864, 21468, 17784, 8010, 2120, 330, 28, 1
  40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1
  151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
  ...
Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 4, 1
  0, 15, 8, 1
  0, 56, 46, 12, 1
  0, 209, 232, 93, 16, 1
  ...
		

Crossrefs

Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Programs

  • Mathematica
    With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Recurrence: T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k).
Diagonal sums are 4^n = A000302(n).
Row sums are A004254(n+1).
G.f.: 1/(1-4*x+x^2-y*x)
T(n,n) = 1, T(n+1,n) = 4*n+4 = A008586(n+1), T(n+2,n) = (n+1)*(8n+15) = A139278(n+1).
T(n,0) = A001353(n+1).

Extensions

Offset changed to 0 by Georg Fischer, Feb 18 2020

A139277 a(n) = n*(8*n+5).

Original entry on oeis.org

0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139273 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024

A124029 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.

Original entry on oeis.org

1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 01 2006

Keywords

Comments

The matrices are {4} if n=1, {{4,-1},{-1,4}} if n=2, {{4,-1,0},{-1,4,-1},{0,-1,4}} if n=3 etc. The empty matrix at n=0 has an empty product (determinant) with assigned value =1.
Riordan array (1/(1-4*x+x^2), -x/(1-4*x+x^2)). - Philippe Deléham, Mar 04 2016

Examples

			Triangle begins as:
      1;
      4,     -1;
     15,     -8,     1;
     56,    -46,    12,    -1;
    209,   -232,    93,   -16,    1;
    780,  -1091,   592,  -156,   20,   -1;
   2911,  -4912,  3366, -1200,  235,  -24,  1;
  10864, -21468, 17784, -8010, 2120, -330, 28, -1;
		

Crossrefs

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
    [A124029(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
    
  • Maple
    A123966x := proc(n,x)
        local A,r,c ;
        A := Matrix(1..n,1..n) ;
        for r from 1 to n do
        for c from 1 to n do
                A[r,c] :=0 ;
            if r = c then
                A[r,c] := A[r,c]+4 ;
            elif abs(r-c)= 1 then
                A[r,c] :=  A[r,c]-1 ;
            end if;
        end do:
        end do:
        (-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
    end proc;
    A123966 := proc(n,k)
        coeftayl( A123966x(n,x),x=0,k) ;
    end proc:
    seq(seq(A123966(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    (* Matrix version*)
    k = 4;
    T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
    M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];
    Table[M[d], {d,10}]
    Table[Det[M[d]], {d,10}]
    Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]
    Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten
    (* Recursive Polynomial form*)
    p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
    Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
    (* Additional program *)
    Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
  • SageMath
    def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
    flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023

Formula

T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (4-x)*p(n-1, x) - p(n-2, x), p(0, x) = 1, p(1, x) = 4-x.
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (4-x)/2) ).
Sum_{k=0..n} T(n, k) = A001906(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A004254(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007070(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000302(n).
T(n, n) = (-1)^n.
T(n, n-1) = 4*A181983(n), n >= 1.
T(n, n-2) = (-1)^n*A139278(n-1), n >= 2.
T(n, 0) = A001353(n+1). (End)
Previous Showing 11-13 of 13 results.