cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A321489 Numbers m such that both m and m+1 have at least 7 distinct prime factors.

Original entry on oeis.org

965009045, 1068044054, 1168008204, 1177173074, 1209907985, 1218115535, 1240268490, 1338753129, 1344185205, 1408520805, 1477640450, 1487720234, 1509981395, 1663654629, 1693460405, 1731986894, 1758259425, 1819458354, 1821278459, 1826445984, 1857332840
Offset: 1

Views

Author

Amiram Eldar and M. F. Hasler, Nov 12 2018

Keywords

Comments

The first 300 terms of this sequence are such that m and m+1 both have exactly 7 prime divisors. See A321497 for the terms m such that m or m+1 has more than 7 prime factors: the smallest such term is 5163068910.
Numbers m and m+1 can never have a common prime factor (consider them mod p), therefore the terms are > sqrt(p(7+7)#) = A003059(A002110(7+7)). (Here we see that sqrt(p(7+8)#) is a more realistic estimate of a(1), but for smaller values of k we may have sqrt(p(2k+1)#) > m(k) > sqrt(p(2k)#), where m(k) is the smallest of two consecutive integers each having at least k prime divisors. For example, A321503(1) < sqrt(p(3+4)#) ~ A321493(1).)
From M. F. Hasler, Nov 28 2018: (Start)
The first 100 terms and beyond are all congruent to one of {14, 20, 35, 49, 50, 69, 84, 90, 104, 105, 110, 119, 125, 129, 134, 140, 144, 170, 174, 189, 195} mod 210. Here, 35, 195, 189, 14 140, 20 and 174 (in order of decreasing frequency) occur between 6 and 13 times, and {49, 50, 110, 129, 134, 144, 170} occur only once.
However, as observed by Charles R Greathouse IV, one can construct a term of this sequence congruent to any given m > 0, modulo any given n > 0.
The first terms of this sequence which are multiples of 210 are in A321497. An example of a term that is a multiple of 210 but not in A321497 is 29759526510, due to Charles R Greathouse IV. Such examples can be constructed by solving A*210 + 1 = B for A having 3 distinct prime factors not among {2, 3, 5, 7}, B having 7 distinct prime factors and gcd(B, 210*A) = 1. (End)

Examples

			a(1) = 5 * 7 * 11 * 13 * 23 * 83 * 101, a(1)+1 = 2 * 3 * 17 * 29 * 41 * 73 * 109.
		

Crossrefs

Cf. A255346, A321503 .. A321506 (analog for k = 2, ..., 6 prime divisors).
Cf. A321502, A321493 .. A321497 (m and m+1 have at least but not both exactly k = 2, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 both have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A002110.

Programs

  • Mathematica
    Select[Range[36000000], PrimeNu[#] > 6 && PrimeNu[# + 1] > 6 &]
  • PARI
    is(n)=omega(n)>6&&omega(n+1)>6
    A321489=List();for(n=965*10^6,1.8e9,is(n)&&listput(A321489,n))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 29 2018

A168628 Numbers n such that n and n+-1 have 4 distinct prime factors.

Original entry on oeis.org

37961, 44485, 45695, 50141, 51429, 55131, 55385, 61335, 63365, 64295, 67165, 68265, 68475, 70005, 70091, 71709, 72709, 76153, 80445, 81549, 81719, 82041, 84435, 85491, 86241, 90364, 95381, 97383, 98021, 99085, 99385, 99429, 99789, 100165, 100491, 100595
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A140078.

Programs

  • Mathematica
    f[n_]:=Length[FactorInteger[n]]; lst={};Do[If[f[n]>=4&&f[n-1]>=4&&f[n+1]>=4,AppendTo[lst,n]],{n,9!}];lst
    SequencePosition[PrimeNu[Range[110000]],{4,4,4}][[All,1]]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 27 2018 *)
  • PARI
    is(n)=omega(n)==4 && omega(n+1)==4 && omega(n-1)==4 \\ Charles R Greathouse IV, Jan 25 2025

Extensions

Corrected and extended by Harvey P. Dale, Apr 27 2018

A321502 Numbers m such that m and m+1 have at least 2, but m or m+1 has at least 3 prime divisors.

Original entry on oeis.org

65, 69, 77, 84, 90, 104, 105, 110, 114, 119, 129, 132, 140, 153, 154, 155, 164, 165, 170, 174, 182, 185, 186, 189, 194, 195, 203, 204, 209, 219, 220, 221, 230, 231, 234, 237, 245, 246, 252, 254, 258, 259, 260, 264, 265, 266, 272, 273, 275, 279, 284, 285, 286, 290, 294, 299, 300, 305
Offset: 1

Views

Author

M. F. Hasler, Nov 27 2018

Keywords

Comments

Since m and m+1 cannot have a common factor, m(m+1) has at least 2+3 prime divisors (= distinct prime factors), whence m+1 > sqrt(primorial(5)) ~ 48. It turns out that a(1)*(a(1)+1) = 2*3*5*11*13, i.e., the prime factor 7 is not present.

Crossrefs

Cf. A321493, A321494, A321495, A321496, A321497 (analog for k = 3, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A255346, A321503 .. A321506, A321489 (m and m+1 have at least 2, ..., 7 prime divisors).

Programs

  • PARI
    select( is_A321502(n)=vecmax(n=[omega(n), omega(n+1)])>2&&vecmin(n)>1, [1..500])

Formula

Equals A255346 \ A074851.

A361796 Prime numbers preceded by two consecutive numbers which are products of four distinct primes (or tetraprimes).

Original entry on oeis.org

8647, 15107, 20407, 20771, 21491, 23003, 23531, 24767, 24971, 27967, 29147, 33287, 34847, 36779, 42187, 42407, 42667, 43331, 43991, 46807, 46867, 51431, 52691, 52747, 53891, 54167, 58567, 63247, 63367, 69379, 71711, 73607, 73867, 74167, 76507, 76631, 76847, 80447, 83591, 84247, 86243
Offset: 1

Views

Author

Massimo Kofler, Apr 26 2023

Keywords

Examples

			8647 (prime), 8646 = 2*3*11*131 and 8645 = 5*7*13*19.
15107 (prime), 15106 = 2*7*13*83 and 15105 = 3*5*19*53.
20407 (prime), 20406 = 2*3*19*179 and 20405 = 5*7*11*53.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    TP:= NULL:
    P:= select(isprime, [2,seq(i,i=3..N/30,2)]):
    for i from 1 to nops(P) do
      for j from 1 to i-1 while P[i]*P[j] <= N/6 do
        for k from 1 to j-1 while P[i]*P[j]*P[k] <= N/2 do
          TP:= TP, op(select(`<=`,map(`*`,P[1..k-1],P[i]*P[j]*P[k]),N));
    od od od:
    TP:= {TP}:
    TTP:= TP intersect map(`-`,TP,1):
    sort(convert(select(isprime, map(`+`,TTP,2)),list)); # Robert Israel, Apr 28 2023
  • Mathematica
    q[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1, 1}; Select[Prime[Range[10^4]], AllTrue[# - {1, 2}, q] &] (* Amiram Eldar, Apr 26 2023 *)

A168629 Numbers n such that n,n+1 and sum of this two numbers have at least 3 distinct prime factors.

Original entry on oeis.org

1105, 1130, 1462, 1644, 1742, 1767, 2014, 2222, 2232, 2260, 2337, 2365, 2397, 2464, 2541, 2667, 2684, 2697, 2702, 2755, 2821, 2914, 3074, 3115, 3195, 3289, 3332, 3477, 3484, 3514, 3552, 3619, 3657, 3685, 3782, 3783, 3842, 3965, 4014, 4088, 4122, 4147, 4277
Offset: 1

Views

Author

Keywords

Examples

			1105 = 5*13*17, 1106 = 2*7*79, 1105 + 1106 = 2211 = 3*11*67.
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(x-> nops(numtheory[factorset](x))>2, [n, n+1, 2*n+1]):
    select(q, [$1..4600])[];  # Alois P. Heinz, Jun 29 2021
  • Mathematica
    f[n_]:=Length[FactorInteger[n]]; lst={};Do[If[f[n]>=3&&f[n+1]>=3&&f[n+n+1]>=3,AppendTo[lst,n]],{n,8!}];lst

A168630 Numbers n such that n, n+1, and the sum of those two numbers each have 4 or more distinct prime factors.

Original entry on oeis.org

46189, 50634, 69597, 76797, 90117, 97954, 108205, 115804, 127347, 138957, 144627, 159340, 164020, 166022, 166497, 166705, 167205, 167485, 173194, 174454, 181670, 186294, 190014, 193154, 198789, 211029, 212134, 214225, 217217, 221815, 222547, 224146
Offset: 1

Views

Author

Keywords

Examples

			FactorInteger[46189]=11*13*17*19, FactorInteger[46190]=2*5*31*149, FactorInteger[46189+46190]=3*7*53*83,..
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; nops(numtheory:-factorset(n))>=4 end proc:
    filter:= n -> g(n) and g(n+1) and g(2*n+1):
    select(filter, [$1..300000]); # Robert Israel, May 09 2018
  • Mathematica
    f[n_]:=Length[FactorInteger[n]]; lst={};Do[If[f[n]>=4&&f[n+1]>=4&&f[n+n+1]>=4,AppendTo[lst,n]],{n,9!}];lst
    Select[Range[225000],Min[Thread[PrimeNu[{#,#+1,2#+1}]]]>3&](* Harvey P. Dale, Nov 11 2017 *)

Extensions

Definition modified and terms extended by Harvey P. Dale, Nov 11 2017

A336658 Numbers k such that k and k+1 both have the prime signature (2,1,1,1) (A189982).

Original entry on oeis.org

11780, 20349, 24794, 33579, 36764, 37323, 38324, 38675, 38709, 42020, 44505, 47564, 47684, 51204, 52155, 53955, 55419, 56259, 64844, 68475, 71379, 71994, 75284, 77714, 79134, 80475, 81548, 81549, 83420, 85491, 86715, 87164, 87380, 90524, 92364, 94940, 95403, 95589
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2020

Keywords

Comments

Goldston et al. (2011) proved that this sequence is infinite.
Some consecutive terms are (81548, 81549), (141218, 141219), (179828, 179829). - David A. Corneth, Jul 29 2020

Examples

			11780 is a term since 11780 = 2^2 * 5 * 19 * 31 and 11781 = 3^2 * 7 * 11 * 17.
		

Crossrefs

Subsequence of A140078 and A274362.
Cf. A189982.

Programs

  • Mathematica
    seqQ[n_] := Sort[FactorInteger[n][[;; , 2]]] == {1, 1, 1, 2}; Select[Range[10^5], seqQ[#] && seqQ[# + 1] &]

A362578 Prime numbers followed by two consecutive numbers which are products of four distinct primes (or tetraprimes).

Original entry on oeis.org

8293, 16553, 17389, 18289, 22153, 26893, 29209, 33409, 35509, 36293, 39233, 39829, 40493, 41809, 45589, 48109, 58393, 59629, 59753, 59981, 60493, 60913, 64013, 64921, 65713, 66169, 69221, 71329, 74093, 75577, 75853, 77689, 77933, 79393, 79609, 82913, 84533, 85853, 87589, 87701, 88681
Offset: 1

Views

Author

Massimo Kofler, Apr 25 2023

Keywords

Examples

			8293 (prime), 8294 = 2*11*13*29 and 8295 = 3*5*7*79.
16553 (prime), 16554 = 2*3*31*89 and 16555 = 5*7*11*43.
17389 (prime), 17390 = 2*5*37*47 and 17391 = 3*11*17*31.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1, 1}; Select[Prime[Range[10^4]], AllTrue[# + {1, 2}, q] &] (* Amiram Eldar, Apr 25 2023 *)
  • PARI
    is(n) = (omega(n)==4) && (bigomega(n)==4); \\ A046386
    isok(p) = isprime(p) && is(p+1) && is(p+2); \\ Michel Marcus, Apr 25 2023
Previous Showing 11-18 of 18 results.