cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A363231 Number of partitions of n with rank 4 or higher (the rank of a partition is the largest part minus the number of parts).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 72, 94, 124, 161, 209, 267, 343, 435, 551, 693, 870, 1084, 1351, 1672, 2066, 2542, 3121, 3815, 4658, 5664, 6875, 8319, 10049, 12102, 14553, 17452, 20894, 24959, 29766, 35420, 42089, 49911, 59100, 69856, 82452, 97152, 114324, 134315
Offset: 1

Views

Author

Seiichi Manyama, May 22 2023

Keywords

Comments

In general, for r>=0, Sum_{k>=1} (-1)^(k-1) * p(n - k*(3*k + 2*r - 1)/2) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)) * (1 - (1/(2*Pi) + (12*r-5)*Pi/144) / sqrt(n/6)), where p() is the partition function. - Vaclav Kotesovec, May 26 2023

Examples

			a(7) = 2 counts these partitions: 7, 6+1.
		

Crossrefs

With rank r or higher: A064174 (r=0), A064173 (r=1), A123975 (r=2), A363230 (r=3), this sequence (r=4).

Programs

Formula

G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+7)/2).
a(n) = p(n-5) - p(n-13) + p(n-24) - ... + (-1)^(k-1) * p(n-k*(3*k+7)/2) + ..., where p() is A000041().
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)) * (1 - (1/(2*Pi) + 43*Pi/144) / sqrt(n/6)). - Vaclav Kotesovec, May 26 2023

A370238 a(n) = n*(3*n + 23)/2.

Original entry on oeis.org

0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0

Views

Author

Torlach Rush, Feb 12 2024

Keywords

Comments

a(a(1)) = A000566(a(1)). This is also true for each of the sequences provided in the formulae below; e.g., A151542(A151542(1)) = A000566(A151542(1)).

Crossrefs

Programs

  • Mathematica
    Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
  • Python
    def a(n): return n*(3*n+23)//2

Formula

a(n) = n*(3*n + 23)/2 = A277976(n)/2.
G.f.: x*(13-10*x)/(1-x)^3.
a(n) = A151542(n) + n.
a(n) = A140675(n) + 2*n.
a(n) = A140674(n) + 3*n.
a(n) = A140673(n) + 4*n.
a(n) = A140672(n) + 5*n.
a(n) = A059845(n) + 6*n.
a(n) = A140091(n) + 7*n.
a(n) = A140090(n) + 8*n.
a(n) = A115067(n) + 9*n.
a(n) = A045943(n) + 10*n.
a(n) = A005449(n) + 11*n.
a(n) = A000326(n) + A008594(n).
Sum_{n>=1} 1/a(n) = 823467/2769844 + sqrt(3)*Pi/69 -3*log(3)/23 = 0.2328608... - R. J. Mathar, Apr 23 2024
E.g.f.: exp(x)*x*(26 + 3*x)/2. - Stefano Spezia, Apr 26 2024

A119789 T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2, triangle read by rows.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 3, 3, 4, 5, 6, 4, 4, 4, 5, 6, 7, 8, 5, 5, 5, 6, 7, 8, 9, 10, 6, 6, 6, 7, 8, 9, 10, 11, 12, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16
Offset: 0

Views

Author

Roger L. Bagula, Jul 30 2006

Keywords

Examples

			Triangle begins as:
  0;
  0, 0;
  0, 0, 0;
  1, 1, 1, 2;
  2, 2, 2, 3, 4;
  3, 3, 3, 4, 5, 6;
  4, 4, 4, 5, 6, 7, 8;
  5, 5, 5, 6, 7, 8, 9, 10;
		

Crossrefs

Programs

  • Magma
    A119789:= func< n,k | n le 2 select 0 else k le 1 select n-2 else n+k-4 >;
    [A119789(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 17 2022
    
  • Mathematica
    f[n_, k_]= If[n<3, 0, If[k==0, n-2, Floor[Log[GoldenRatio, Fibonacci[n]*Fibonacci[k]]]]];
    Table[f[n, k], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[n<3, 0, If[k<2, n-2, n+k-4]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 17 2022 *)
  • SageMath
    def A119789(n,k):
        if (n<3): return 0
        elif (k<2): return n-2
        else: return n+k-4
    flatten([[A119789(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 17 2022

Formula

T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2.
From G. C. Greubel, Dec 17 2022: (Start)
T(n, k) = n+k-4, with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n >= 3.
T(n, n) = 2*T(n, 0).
T(2*n, n) = 0*[n<2] + A016789(n-2)*[n>1].
T(2*n, n+1) = 3*A001477(n-1), for n > 0.
T(2*n, n-1) = A033627(n) - [n=1].
T(3*n, n) = n*[n<2] + 4*A000027(n-2)*[n>1].
Sum_{k=0..n} T(n, k) = 0*[n<2] + A140090(n-2)*[n>1].
Sum_{k=0..n} (-1)^k * T(n, k) = 0*[n<2] + (-1)^n*A064455(n-2)*[n>1]. (End)

Extensions

Edited by G. C. Greubel, Dec 17 2022

A342138 Array T(n,k) = (n+k)*(3*n+3*k-5)/2 + (3*k+1), read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 3, 2, 5, 8, 7, 10, 13, 16, 15, 18, 21, 24, 27, 26, 29, 32, 35, 38, 41, 40, 43, 46, 49, 52, 55, 58, 57, 60, 63, 66, 69, 72, 75, 78, 77, 80, 83, 86, 89, 92, 95, 98, 101, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156
Offset: 0

Views

Author

Michel Marcus, Mar 01 2021

Keywords

Comments

This is an instance of a storing function on N^2 (injective) with density 1/3.

Examples

			Array begins:
   1  3   8  16  27 ...
   0  5  13  24  38 ...
   2 10  21  35  52 ...
   7 18  32  49  69 ...
  15 29  46  66  89 ...
  ...
		

Crossrefs

Cf. A005449 (first column), A104249 (first row), A140090 (second row), A201279 (diagonal).

Programs

  • PARI
    T(n,k) = (n+k)*(3*n+3*k-5)/2 + (3*k+1);
    matrix(8, 8, n, k, T(n-1, k-1))
Previous Showing 31-34 of 34 results.