cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A247142 Numbers for which the root mean square of proper divisors is an integer.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 145, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 215, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 341
Offset: 1

Views

Author

Daniel Lignon, Nov 20 2014

Keywords

Comments

All the prime numbers (A000040) are in this sequence. But there are other numbers (A247135).

Crossrefs

Cf. A140480 (RMS of all divisors is an integer).

Programs

  • Mathematica
    Select[Range[2,1000],IntegerQ[RootMeanSquare[Most[Divisors[#]]]]&]

A143822 Primes p such that sigma_0((p*p + 1)/2) = 4.

Original entry on oeis.org

13, 17, 23, 31, 37, 53, 67, 89, 97, 103, 109, 113, 127, 137, 149, 151, 163, 167, 179, 197, 211, 223, 227, 229, 241, 263, 269, 277, 281, 283, 311, 331, 347, 359, 367, 373, 383, 389, 397, 419, 431, 433, 439, 479, 491, 503, 509, 541, 547, 587, 601, 617, 619, 653
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 02 2008

Keywords

Comments

A048161 are primes p such that sigma_0((p*p+1)/2)= 2. Primes p such that sigma_0((p*p+1)/2)= 3 gives all RMS numbers (A140480) with 2 divisors (prime RMS numbers, prime NSW numbers (A088165)) and all RMS numbers with 4 divisors as those are a multiple of two nonequal RMS prime numbers. In general we look after primes p such that sigma_0((p*p+1)/2) equals some given integer k. RMS numbers n=p_1*...*p_t have k=2^t divisors (p_i prime, t integer >=1) and sigma_2(p_1*...*p_t)=(2^t)* (q_1^r_1 *...* q_t^r_t), q_j prime, r_t integer >=1.

Crossrefs

Programs

  • Maple
    A066885 := proc(n) local p; p :=ithprime(n) ; (p^2+1)/2 ; end: A000005 := proc(n) numtheory[tau](n) ; end: for n from 2 to 300 do if A000005(A066885(n)) = 4 then printf("%d,",ithprime(n)) ; fi; od: # R. J. Mathar, Sep 04 2008
  • Mathematica
    Select[Range[650], PrimeQ[#] && DivisorSigma[0, (#^2 + 1)/2] == 4 &] (* Amiram Eldar, Mar 11 2020 *)
    Select[Prime[Range[150]],DivisorSigma[0,(#^2+1)/2]==4&] (* Harvey P. Dale, Sep 22 2022 *)

Extensions

97 inserted and extended by R. J. Mathar, Sep 04 2008

A144857 Numbers k that divide Sum_{i=1..k} phi(i)^2, where phi(i) = totient function A000010.

Original entry on oeis.org

1, 2, 3, 6, 26, 190, 610, 2078, 2670, 7038, 16466, 89973, 150374, 157298, 163367, 419090, 640627, 879702, 3479689, 5618437, 11304721, 74106171, 471591726, 475915439, 1198344149, 2270643086, 3051266010
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 23 2008

Keywords

Comments

Does a number k exist such that RootMeanSquare(phi(1), ..., phi(k)) is an integer?

Crossrefs

Programs

  • Mathematica
    lst = {}; s = 0; Do[ s = s + EulerPhi[n]^2; If[ Mod[s, n] == 0, AppendTo[lst, n]], {n, 10^9}]; lst (* Robert G. Wilson v, Oct 02 2008 *)
  • PARI
    s=0;for(n=1,1e6,s+=eulerphi(n)^2;if(s%n==0,print1(n", "))) \\ Charles R Greathouse IV, Mar 05 2013

Formula

{k: k | A057434(k)}. - R. J. Mathar, Sep 29 2008

Extensions

a(8)-a(11) from R. J. Mathar, Sep 29 2008
a(12)-a(24) from Robert G. Wilson v, Oct 02 2008
a(25)-a(27) from Donovan Johnson, Aug 21 2011

A144922 Numbers k such that k*sigma_2(k)/sigma_1(k) is an integer.

Original entry on oeis.org

1, 4, 6, 9, 12, 16, 18, 20, 24, 25, 28, 36, 44, 45, 48, 49, 50, 54, 60, 64, 72, 81, 90, 92, 96, 100, 108, 112, 117, 121, 132, 140, 144, 150, 153, 162, 168, 169, 180, 192, 196, 198, 200, 204, 216, 225, 228, 234, 240, 242, 252, 256, 270, 288, 289, 294, 300
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 25 2008

Keywords

Comments

Numbers k such that k*A001157(k)/A000203(k) is an integer. This sequence is connected closely with Ore divisor numbers (A001599) and RMS numbers (A140480).
This sequence is infinite. E.g., all the numbers of the form 3*2^m, for m >= 1, are terms, since 3*2^m * sigma_2(3*2^m) / sigma_1(3*2^m) = 5 * 2^(m-1) * (2^(m+1)+1) is an integer. - Amiram Eldar, Dec 25 2024

Crossrefs

A020487 is a subsequence.

Programs

  • Mathematica
    Select[Range[300],IntegerQ[(#*DivisorSigma[2,#])/DivisorSigma[1,#]]&] (* Harvey P. Dale, Oct 28 2018 *)
  • PARI
    is(k) = my(f = factor(k)); !((k*sigma(f, 2)) % sigma(f)); \\ Amiram Eldar, Dec 25 2024

Extensions

More terms from Harvey P. Dale, Oct 28 2018

A145450 Numbers k such that k/A000005(k) is a square.

Original entry on oeis.org

1, 2, 36, 108, 128, 225, 288, 441, 450, 600, 864, 882, 1089, 1176, 1521, 1944, 2000, 2178, 2601, 2904, 3042, 3240, 3249, 4056, 4761, 5202, 6144, 6498, 6561, 6936, 7569, 8649, 8664, 9522, 10000, 11760, 12321, 12696, 13122, 15129, 15138, 16641, 17298
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 10 2008

Keywords

Comments

Subsequence of A033950.

Examples

			36/A000005(36) = 36/9 = 4 = 2^2, hence 36 is in the sequence.
		

Crossrefs

Cf. A000005 (sigma_0, number of divisors of n), A033950 (refactorable numbers), A140480 (RMS numbers).

Programs

  • Mathematica
    Select[Range[20000],IntegerQ[Sqrt[#/DivisorSigma[0,#]]]&] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    {m=18000; for(n=1, m, s=sigma(n,0); if(n%s==0&&issquare(n/s), print1(n,",")))}

Extensions

Edited and extended by Klaus Brockhaus, Oct 15 2008

A147591 RootMeanSquare(digits of n) is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 17, 22, 33, 44, 55, 66, 71, 77, 88, 99, 111, 115, 151, 157, 175, 222, 333, 444, 511, 517, 555, 571, 666, 715, 751, 777, 888, 999, 1111, 1135, 1153, 1177, 1315, 1339, 1351, 1393, 1513, 1531, 1557, 1575, 1717, 1755, 1771, 1933, 2000
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 08 2008

Keywords

Examples

			n=1236, RMS(digits of 1351)=sqrt((1^2+3^2+5^2+1^2)/4)=sqrt(36/4)=sqrt(9)=3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],IntegerQ[RootMeanSquare[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 02 2017 *)

A147980 Given a set of positive integers A={1,2,...,n-1,n}, n>=2. Take subsets of A of the form {1,...,n} so only subsets containing numbers 1 and n are allowed. Then a(1)=1 and a(n) is the number of subsets where arithmetic mean of the subset is an integer.

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 8, 12, 28, 44, 84, 156, 288, 540, 1020, 1904, 3616, 6860, 13024, 24836, 47448, 90772, 174072, 334348, 643112, 1238928, 2389956, 4615916, 8925808, 17278680, 33482196, 64944060, 126083448, 244989096, 476416560, 927167752, 1805691728, 3519062820
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 18 2008

Keywords

Comments

For n odd the value of the arithmetic mean for each possible subset equals (n+1)/2. For n even this value is n/2 or (n+2)/2. If looking after RootMeanSquare for the subset we obtain a sequence [1,0,0,0,0,0,2,...]. We see for example for n=7, A={1,2,3,4,5,6,7} and the only 2 subsets with an integer RootMeanSquare are {1,7}, {1,5,7}. Interestingly the value of RootMeanSquare is 5 for both subsets. So the sequence A140480 RMS numbers is a subsequence of it as a set of divisors of n is clearly a subset of n of the form {1,...,n}.

Examples

			n=5, A={1,2,3,4,5}. Subsets of A starting with 1 and ending with 5 are : {1,5}, {1,2,5}, {1,3,5}, {1,4,5}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {1,2,3,4,5}. Arithmetic mean of the subset is an integer for subsets : {1,5}, {1,3,5}, {1,2,4,5}, {1,2,3,4,5}. Thus a(5) = 4. The value of the arithmetic mean is 3 for all 4 subsets.
		

Crossrefs

Cf. A140480.

Programs

  • Maple
    b:= proc(i,s,c) option remember; `if` (i=1, `if` (irem (s, c)=0, 1, 0), b(i-1, s, c)+ b(i-1, s+i, c+1)) end: a:= n-> `if` (n=1, 1, b (n-1, n+1, 2)): seq (a(n), n=1..40);  # Alois P. Heinz, May 06 2010
  • Mathematica
    b[i_, s_, c_] := b[i, s, c] = If[i==1, If[Mod[s, c]==0, 1, 0], b[i-1, s, c] + b[i-1, s+i, c+1]];
    a[n_] := If[n==1, 1, b[n-1, n+1, 2]];
    Array[a, 40] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, May 06 2010

A152215 Numbers k such that sigma_2(k)/(sigma_1(k)*sigma_0(k)) = c, c an integer.

Original entry on oeis.org

1, 4, 25, 100, 121, 256, 289, 484, 529, 841, 1156, 1600, 1681, 2116, 2209, 2809, 3025, 3364, 3481, 5041, 6400, 6724, 6889, 7225, 7921, 8836, 10201, 11236, 11449, 12100, 12769, 13225, 13924, 17161, 18225, 18496, 18769, 20164, 21025, 22201, 27556, 27889, 28900
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 29 2008

Keywords

Comments

k : A001157(k)/(A000203(k)*A000005(k)) = c, c an integer.

Crossrefs

Programs

  • Mathematica
    Select[Range[50000],IntegerQ[DivisorSigma[2,#]/(DivisorSigma[1,#] DivisorSigma[ 0,#])]&] (* Harvey P. Dale, Feb 12 2013 *)
  • PARI
    isok(k) = denominator(sigma(k,2)/(sigma(k, 1)*sigma(k,0))) == 1; \\ Michel Marcus, Jul 15 2019

Extensions

More terms from Harvey P. Dale, Feb 12 2013

A152218 Numbers k such that sigma_2(k)*sigma_1(k)/sigma_0(k) is a perfect square.

Original entry on oeis.org

1, 4, 529, 2116, 2583, 3249, 3346, 6150, 10332, 12474, 12792, 12996, 28224, 38240, 59245, 85905, 91035, 103607, 142560, 176382, 212949, 236980, 249744, 343620, 360096, 364140, 379050, 414428, 450840, 751530, 787710, 788424, 851796, 1059474, 1132096, 1366407
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 29 2008

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := IntegerQ[ Sqrt[ DivisorSigma[2, n] DivisorSigma[1, n]/DivisorSigma[0, n]]]; k = 1; lst = {}; While[k < 1132096, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Sep 10 2010 *)
    Select[Range[137*10^4],IntegerQ[Sqrt[(DivisorSigma[2,#]DivisorSigma[ 1,#])/ DivisorSigma[ 0,#]]]&] (* Harvey P. Dale, Jun 18 2018 *)
  • PARI
    isok(k) = {my(f = factor(k)); issquare(sigma(f, 2) * sigma(f) / numdiv(f));} \\ Amiram Eldar, Feb 01 2025

Formula

{k: A001157(k)*A000203(k)/A000005(k) in A000290}.

Extensions

Correct definition recovered by Jack Brennen
12 more terms from R. J. Mathar, Aug 25 2010
More terms from Robert G. Wilson v, Sep 10 2010

A158287 Composite RMS numbers: composite numbers c such that root mean square of divisors of c is an integer.

Original entry on oeis.org

287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489, 1289441
Offset: 1

Views

Author

Jaroslav Krizek, Mar 15 2009

Keywords

Comments

a(n) = composite number c (A002808), iff sqrt(sigma_2(c)/tau(c)) = sqrt(A001157(c)/A000005(c)) = k, for k = natural numbers (A000027). Prime RMS numbers (NSW primes) in A088165.
16 of the first 1654 terms are even (the smallest is 2217231104). The first 16 even terms are all divisible by 30976. - Donovan Johnson, Apr 17 2013

Examples

			a(1) = 287, sqrt(A001157(287)/A000005(287)) = sqrt(84100/4) = 145, number 145 is an integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[13*10^5],CompositeQ[#]&&IntegerQ[RootMeanSquare[Divisors[ #]]]&] (* Harvey P. Dale, Sep 23 2022 *)
Previous Showing 31-40 of 43 results. Next