cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A139830 Primes of the form 7x^2+6xy+7y^2.

Original entry on oeis.org

7, 23, 47, 103, 127, 167, 223, 263, 367, 383, 463, 487, 503, 607, 647, 727, 743, 823, 863, 887, 967, 983, 1063, 1087, 1103, 1223, 1303, 1327, 1367, 1423, 1447, 1487, 1543, 1567, 1583, 1607, 1663, 1783, 1823, 1847, 2063, 2087, 2143, 2207, 2287
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-160. See A139827 for more information.
Also primes of the forms 7x^2+2xy+23y^2 and 7x^2+4xy+12y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 40 in {7, 23}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    Union[QuadPrimes2[7, 6, 7, 10000], QuadPrimes2[7, -6, 7, 10000]] (* see A106856 *)

Formula

The primes are congruent to {7, 23} (mod 40).

A139847 Primes of the form 6x^2 + 6xy + 19y^2.

Original entry on oeis.org

19, 31, 139, 199, 271, 439, 619, 691, 811, 859, 1039, 1231, 1279, 1291, 1399, 1459, 1531, 1699, 1879, 1951, 2131, 2239, 2371, 2539, 2551, 2659, 2719, 2791, 2971, 3079, 3331, 3391, 3499, 3559, 3631, 3919, 4051, 4219, 4231, 4339, 4591, 4639
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -420. See A139827 for more information.
Also primes of the forms 19x^2 + 12xy + 24y^2 and 19x^2 + 16xy + 31y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 420 in {19, 31, 139, 199, 271, 391}]; // Vincenzo Librandi, Jul 29 2012
    
  • Mathematica
    QuadPrimes2[6, -6, 19, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(), s=[19, 31, 139, 199, 271, 391]); forprime(p=19, lim, if(setsearch(s, p%420), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

The primes are congruent to {19, 31, 139, 199, 271, 391} (mod 420).

A139856 Primes of the form 5x^2 + 24y^2.

Original entry on oeis.org

5, 29, 101, 149, 269, 389, 461, 509, 701, 821, 941, 1061, 1109, 1181, 1229, 1301, 1709, 1901, 1949, 2069, 2141, 2309, 2381, 2549, 2621, 2741, 2789, 2861, 2909, 3221, 3389, 3461, 3581, 3701, 3821, 3989, 4229, 4349, 4421, 5021, 5189, 5261
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-480. See A139827 for more information.
Except for 5, also primes of the form 21x^2+6xy+29y^2. See A140633. - T. D. Noe, May 19 2008

Crossrefs

Cf. A140633.

Programs

  • Magma
    [5] cat [ p: p in PrimesUpTo(6000) | p mod 120 in {29, 101}]; // Vincenzo Librandi, Jul 29 2012
    
  • Mathematica
    QuadPrimes2[5, 0, 24, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\5), w=5*x^2; for(y=0, sqrtint((lim-w)\24), if(isprime(t=w+24*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 22 2017

Formula

Except for 5, the primes are congruent to {29, 101} (mod 120).

A139859 Primes of the form 11x^2+2xy+11y^2.

Original entry on oeis.org

11, 59, 131, 179, 251, 419, 491, 659, 971, 1019, 1091, 1259, 1451, 1499, 1571, 1619, 1811, 1931, 1979, 2099, 2339, 2411, 2459, 2531, 2579, 2699, 2819, 2939, 3011, 3251, 3299, 3371, 3491, 3539, 3659, 3779, 3851, 4019, 4091, 4139, 4211, 4259
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-480. See A139827 for more information.
Also primes of the forms 11x^2+4xy+44y^2, 11x^2+10xy+35y^2 and 11x^2+8xy+56y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {11, 59}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    Union[QuadPrimes2[11, 2, 11, 10000], QuadPrimes2[11, -2, 11, 10000]] (* see A106856 *)

Formula

The primes are congruent to {11, 59} (mod 120).

A139877 Primes of the form 8x^2+21y^2.

Original entry on oeis.org

29, 53, 149, 197, 317, 389, 557, 653, 701, 821, 1061, 1229, 1373, 1493, 1709, 1733, 1877, 1901, 1997, 2069, 2213, 2237, 2333, 2381, 2549, 2741, 2837, 2909, 3221, 3389, 3413, 3557, 3581, 3677, 3917, 4013, 4229, 4253, 4349, 4397, 4421, 4517
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-672. See A139827 for more information.
Also primes of the form 29x^2+12xy+36y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 168 in {29, 53, 149}]; // Vincenzo Librandi, Jul 30 2012
  • Mathematica
    QuadPrimes2[8, 0, 21, 10000] (* see A106856 *)

Formula

The primes are congruent to {29, 53, 149} (mod 168).

A139878 Primes of the form 8x^2+8xy+23y^2.

Original entry on oeis.org

23, 71, 191, 239, 263, 359, 431, 599, 743, 863, 911, 1031, 1103, 1367, 1439, 1583, 1607, 1871, 2039, 2087, 2111, 2207, 2423, 2447, 2543, 2591, 2711, 2879, 2927, 3119, 3623, 3719, 3767, 4127, 4271, 4391, 4463, 4799, 4943, 4967, 5231, 5279
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-672. See A139827 for more information.
Also primes of the forms 23x^2+16xy+32y^2, 15x^2+6xy+23y^2 and 23x^2+4xy+44y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 168 in {23, 71, 95}]; // Vincenzo Librandi, Jul 30 2012
  • Mathematica
    QuadPrimes2[8, -8, 23, 10000] (* see A106856 *)

Formula

The primes are congruent to {23, 71, 95} (mod 168).

A139879 Primes of the form 12x^2+12xy+17y^2.

Original entry on oeis.org

17, 41, 89, 257, 353, 521, 593, 761, 857, 881, 929, 1049, 1097, 1193, 1217, 1361, 1433, 1553, 1601, 1697, 1721, 1889, 2273, 2393, 2441, 2609, 2729, 2777, 2897, 3041, 3209, 3449, 3617, 3881, 4049, 4073, 4217, 4241, 4289, 4409, 4457, 4721
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-672. See A139827 for more information.
Also primes of the forms 17x^2+10xy+41y^2 and 17x^2+4xy+20y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 168 in {17, 41, 89}]; // Vincenzo Librandi, Jul 30 2012
  • Mathematica
    QuadPrimes2[12, -12, 17, 10000] (* see A106856 *)

Formula

The primes are congruent to {17, 41, 89} (mod 168).

Extensions

Corrected and extended b-file - Ray Chandler, Jul 31 2014

A139923 Primes of the form 8x^2+39y^2.

Original entry on oeis.org

47, 71, 167, 239, 359, 383, 431, 479, 743, 839, 863, 983, 1103, 1151, 1319, 1367, 1487, 1607, 2039, 2087, 2111, 2351, 2399, 2423, 2543, 2663, 2711, 2879, 2927, 3023, 3167, 3191, 3359, 3671, 3863, 3911, 4127, 4271, 4583, 4751, 4799, 4919
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-1248. See A139827 for more information.
Also primes of the form 15x^2+12xy+44y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 312 in [47, 71, 119, 167, 215, 239]]; // Vincenzo Librandi, Aug 01 2012
  • Mathematica
    QuadPrimes2[8, 0, 39, 10000] (* see A106856 *)

Formula

The primes are congruent to {47, 71, 119, 167, 215, 239} (mod 312).

A139924 Primes of the form 8x^2+8xy+41y^2.

Original entry on oeis.org

41, 89, 137, 281, 353, 401, 449, 593, 617, 761, 929, 977, 1097, 1217, 1289, 1409, 1553, 1601, 1697, 1721, 1913, 2153, 2273, 2633, 2657, 2777, 2801, 2897, 2969, 3089, 3209, 3257, 3593, 3833, 3881, 4049, 4217, 4337, 4409, 4457, 4649, 4673
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-1248. See A139827 for more information.
Also primes of the forms 32x^2+16xy+41y^2 and 20x^2+12xy+33y^2. See A140633. - T. D. Noe, May 19 2008
In base 12, the sequence is 35, 75, E5, 1E5, 255, 295, 315, 415, 435, 535, 655, 695, 775, 855, 8E5, 995, X95, E15, E95, EE5, 1135, 12E5, 1395, 1635, 1655, 1735, 1755, 1815, 1875, 1955, 1X35, 1X75, 20E5, 2275, 22E5, 2415, 2535, 2615, 2675, 26E5, 2835, 2855. Moreover, the discriminant is 880 and all primes are {35, 75, E5, 115, 1E5, 215} mod 220. - Walter Kehowski, May 31 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 312 in [41, 89, 137, 161, 281, 305]]; // Vincenzo Librandi, Aug 01 2012
  • Mathematica
    QuadPrimes2[8, -8, 41, 10000] (* see A106856 *)

Formula

The primes are congruent to {41, 89, 137, 161, 281, 305} (mod 312).

A139988 Primes of the form 8x^2+105y^2.

Original entry on oeis.org

113, 137, 233, 617, 953, 977, 1913, 2153, 2297, 2417, 2633, 2657, 2753, 3137, 3257, 3593, 3833, 4337, 4673, 4817, 4937, 5153, 5273, 5657, 6113, 6353, 6833, 6857, 7193, 7457, 7673, 7793, 8297, 8513, 8537, 9137, 9377, 9473, 9857, 10193, 10313
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-3360. See A139827 for more information.
Also primes of the form 32x^2+24xy+57y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [p: p in PrimesUpTo(11000) | p mod 840 in [113, 137, 233, 473, 617, 737]]; // Vincenzo Librandi, Aug 03 2012
  • Mathematica
    QuadPrimes2[8, 0, 105, 10000] (* see A106856 *)

Formula

The primes are congruent to {113, 137, 233, 473, 617, 737} (mod 840).
Previous Showing 31-40 of 68 results. Next