A141065
List of different composite numbers in Pascal-like triangles with index of asymmetry y = 1 and index of obliqueness z = 0 or z = 1.
Original entry on oeis.org
4, 12, 20, 28, 33, 46, 54, 63, 69, 88, 168, 70, 143, 161, 289, 232, 567, 594, 169, 376, 399, 817, 1194, 407, 609, 934, 1778, 1820, 2355, 408, 975, 986, 2150, 3789, 4570, 984, 1596, 2316, 4862, 5646, 7922, 8745, 985, 2367, 2583, 9849, 10801, 16281, 16532, 4180, 5667, 17091, 23585, 30923, 32948, 2378
Offset: 1
Pascal-like triangle with y = 1 and z = 0 (i.e., A140998) begins as follows:
1, so no composites.
1 1, so no composites.
1 2 1, so no composites.
1 4 2 1, so a(1) = 4.
1 7 5 2 1, so no composites.
1 12 11 5 2 1, so a(2) = 12.
1 20 23 12 5 2 1, so a(3) = 20.
1 33 46 28 12 5 2 1, so a(4) = 28, a(5) = 33, and a(6) = 46.
1 54 89 63 29 12 5 2 1, so a(7) = 54 and a(8) = 63.
1 88 168 137 69 29 12 5 2 1, so a(9) = 69, a(10) = 88, and a(11) = 168.
1 143 311 289 161 70 29 12 5 2 1, so a(12) = 70, a(13) = 143, a(14) = 161, and a(15) = 289.
1 232 567 594 367 168 70 29 12 5 2 1, so a(16) = 232, a(17) = 567, and a(18) = 594.
... [example edited by _Petros Hadjicostas_, Jun 11 2019]
Cf.
A140993 (mirror image of
A140998 with y = 1 and z = 1),
A140994 (triangle when y = 2 and z = 1),
A140995 (triangle when y = 3 and z = 1),
A140996 (triangle when y = 3 and z = 0),
A140997 (triangle when y = 2 and z = 0),
A140998 (has the above triangle with y = 1 and z = 0),
A141020,
A141021,
A141064 (has primes for y = 1),
A141066 (has composites when y = 2),
A141067 (has primes when y = 2),
A141068 (has primes when y = 3),
A141069 (has composites when y = 3).
-
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
# Construction of array A140998 (y = 1 and z = 0):
A140998 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 2, k - 1); end if; end proc;
# Construction of the current sequence:
A141065 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140998(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
# Generation of terms of the current sequence:
A141065(24);
# If one wishes to sort composites, then one may replace RETURN(a) in the above Maple code with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
A001949
Solutions of a fifth-order probability difference equation.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 63, 124, 244, 480, 944, 1856, 3649, 7174, 14104, 27728, 54512, 107168, 210687, 414200, 814296, 1600864, 3147216, 6187264, 12163841, 23913482, 47012668, 92424472, 181701728, 357216192, 702268543, 1380623604, 2714234540
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see pp. 356 and 369.
- T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011), Article #11.4.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,-1)
Column k = 1 of
A141020 (with a different offset) and second main diagonal of
A141021 (with no zeros).
-
A001949:=1/(z-1)/(z**5+z**4+z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation
-
t={0,0,0,0,0};Do[AppendTo[t,t[[-5]]+t[[-4]]+t[[-3]]+t[[-2]]+t[[-1]]+1],{n,40}];t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
LinearRecurrence[{2,0,0,0,0,-1},{0,0,0,0,0,1},40] (* Harvey P. Dale, Jan 17 2015 *)
-
a(n):=sum(sum((-1)^j*binomial(n-5*j-5,k-1)*binomial(n-k-5*j-4,j),j,0,(n-k-4)/5),k,1,n-4); /* Vladimir Kruchinin, Oct 19 2011 */
-
x='x+O('x^99); concat(vector(5), Vec(x^5/((x-1)*(x^5+x^4+x^3+x^2+x-1)))) \\ Altug Alkan, Oct 04 2017
A141069
List of different composites in Pascal-like triangles with index of asymmetry y = 3 and index of obliqueness z = 0 or z = 1.
Original entry on oeis.org
4, 8, 16, 35, 60, 72, 116, 148, 224, 303, 432, 308, 618, 833, 636, 1257, 1606, 1313, 2550, 3096, 1314, 2709, 5160, 5968, 2715, 5584, 10418, 11504, 5609, 11499, 20991, 22175, 23655, 42215, 42744, 11588, 23934, 48607, 82392, 84752, 23941, 99763, 158816, 169880
Offset: 1
Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:
1, so no composites.
1 1, so no composites.
1 2 1, so no composites.
1 4 2 1, so a(1) = 4.
1 8 4 2 1, so a(2) = 8.
1 16 8 4 2 1, so a(3) = 16.
1 31 17 8 4 2 1, so no new composites.
1 60 35 17 8 4 2 1, so a(4) = 35 and a(5) = 60.
1 116 72 35 17 8 4 2 1, so a(6) = 72 and a(7) = 116.
1 224 148 72 35 17 8 4 2 1, so a(8) = 148 and a(9) = 224.
1 432 303 149 72 35 17 8 4 2 1, so a(10) = 303 and a(11) = 432.
... [edited by _Petros Hadjicostas_, Jun 13 2019]
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141020,
A141021,
A141031,
A141064,
A141065,
A141066,
A141067,
A141069,
A141070,
A141072,
A141073.
-
# This is a modification of R. J. Mathar's program from sequence A141031 (for the case y = 4 and z = 0).
# Definition of sequence A140996 (y = 3 and z = 0):
A140996 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; elif k = n - 3 then 8; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 4, k) + procname(n - 4, k - 1); end if; end proc;
# Definition of current sequence:
A141069 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140996(n, k); if not (new = 1 or isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
# Generation of current sequence until row n = 30:
A141069(30);
# If one wishes the composites to be sorted, then replace RETURN(a) with RETURN(sort(a)) in the above Maple code. In such a case, however, the output may not necessarily be uniquely defined (because it changes with the value of n). - Petros Hadjicostas, Jun 15 2019
A141068
List of different primes in Pascal-like triangles with index of asymmetry y = 3 and index of obliquity z = 0 or z = 1.
Original entry on oeis.org
2, 17, 31, 149, 11587, 49429, 15701951, 21304973, 3846277, 251375273, 5449276159, 296410704409, 750391353973, 205109154121, 875366796349, 72210869205443, 139884035510017, 79014319582741129, 94461530406533783, 2562508045902551
Offset: 1
Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:
1, so no primes.
1 1, so no primes
1 2 1, so a(1) = 2.
1 4 2 1, so no new primes.
1 8 4 2 1, so no new primes.
1 16 8 4 2 1, so new primes.
1 31 17 8 4 2 1, so a(2) = 17 and a(3) = 31.
1 60 35 17 8 4 2 1, so no new primes.
1 116 72 35 17 8 4 2 1, so no new primes.
1 224 148 72 35 17 8 4 2 1, so new primes.
1 432 303 149 72 35 17 8 4 2 1, so a(4) = 149.
...
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141020,
A141021,
A141031,
A141064,
A141065,
A141066,
A141067,
A141069,
A141070,
A141072,
A141073.
-
# This is a modification of R. J. Mathar's program for A141031 (for the case y = 4 and z = 0).
# Definition of sequence A140996 (y = 3 and z = 0):
A140996 := proc(n, k) option remember; if k < 0 or n < k then 0; elif k = 0 or k = n then 1; elif k = n - 1 then 2; elif k = n - 2 then 4; elif k = n - 3 then 8; else procname(n - 1, k) + procname(n - 2, k) + procname(n - 3, k) + procname(n - 4, k) + procname(n - 4, k - 1); end if; end proc;
# Definition of the current sequence:
A141068 := proc(nmax) local a, b, n, k, new; a := []; for n from 0 to nmax do b := []; for k from 0 to n do new := A140996(n, k); if not (new = 1 or not isprime(new) or new in a or new in b) then b := [op(b), new]; end if; end do; a := [op(a), op(sort(b))]; end do; RETURN(a); end proc;
# Generation of the current sequence:
A141068(80);
# If one wishes to get the primes sorted (as R. J. Mathar does in A141031), then replace RETURN(a) in the code above with RETURN(sort(a)). In such a case, however, the output sequence is not uniquely defined because it depends on the maximum n. - Petros Hadjicostas, Jun 15 2019
A141018
a(n) is the largest number in the n-th row of triangle A140997.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 28, 52, 96, 177, 345, 694, 1386, 2751, 5431, 10672, 20885, 40724, 79153, 153402, 296528, 571845, 1129293, 2264749, 4527029, 9021498, 17926740, 35527082, 70230422, 138504765, 272545323, 535184340, 1048842743, 2051669285, 4006253136, 7954830148
Offset: 0
The largest number of 1 is a(0) = 1.
The largest number of 1 1 is a(1) = 1.
The largest number of 1 2 1 is a(2) = 2.
The largest number of 1 4 2 1 is a(3) = 4.
The largest number of 1 8 4 2 1 is a(4) = 8.
The largest number of 1 15 9 4 2 1 is a(5) = 15.
The largest number of 1 28 19 9 4 2 1 is a(6) = 28.
The largest number of 1 52 40 19 9 4 2 1 is a(7) = 52.
-
A140997 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; else procname(n-1,k)+procname(n-2,k)+procname(n-3,k)+procname(n-3,k-1) ; fi; end:
A141018 := proc(n) max(seq(A140997(n,k),k=0..n)) ; end: for n from 0 to 60 do printf("%d,",A141018(n)) ; od: # R. J. Mathar, Sep 19 2008
-
T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n-1, 2, k == n-2, 4, True, T[n-1, k]+T[n-2, k]+T[n-3, k]+T[n-3, k-1]];
a[n_] := Max[Table[T[n, k], {k, 0, n}]];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 18 2023, after R. J. Mathar *)
Simplified definition, corrected from a(12) on and extended by
R. J. Mathar, Sep 19 2008
A308808
Limiting row sequence of Pascal-like triangle A141021 (with index of asymmetry s = 4).
Original entry on oeis.org
1, 2, 4, 8, 16, 33, 67, 136, 276, 561, 1140, 2316, 4705, 9559, 19421, 39457, 80163, 162864, 330885, 672247, 1365779, 2774802, 5637462, 11453422, 23269491, 47275758, 96048397, 195137952, 396454511, 805461867, 1636426882, 3324667561, 6754603284, 13723075972, 27880662448, 56644103708
Offset: 0
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141015,
A141018,
A141020,
A141021,
A141031,
A141065,
A141066,
A141067.
A309462
Limiting row sequence for Pascal-like triangle A140995 (Stepan's triangle with index of asymmetry s = 3).
Original entry on oeis.org
1, 2, 4, 8, 17, 35, 72, 149, 308, 636, 1314, 2715, 5609, 11588, 23941, 49462, 102188, 211120, 436173, 901131, 1861732, 3846329, 7946496, 16417420, 33918306, 70075047, 144774689, 299103768, 617946857, 1276675050, 2637604132, 5449276664, 11258177753, 23259337731
Offset: 0
Cf.
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141020,
A141021,
A141031,
A141065,
A141066,
A141067,
A141068,
A141069,
A141070,
A141072,
A141073,
A308808.
A141019
a(n) is the largest number in the n-th row of triangle A140996.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 84752, 169880, 340013, 679604, 1356641, 2704954, 5387340, 10718620, 21304973, 42308331, 83945336, 166423276, 329683867, 652627294, 1291020297, 2552209710, 5042305104
Offset: 0
The largest number of 1 is a(0) = 1.
The largest number of 1 1 is a(1) = 1.
The largest number of 1 2 1 is a(2) = 2.
The largest number of 1 4 2 1 is a(3) = 4.
The largest number of 1 8 4 2 1 is a(4) = 8.
The largest number of 1 16 8 4 2 1 is a(5) = 16.
The largest number of 1 31 17 8 4 2 1 is a(6) = 31.
-
A140996 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; else procname(n-1,k)+procname(n-2,k) +procname(n-3,k)+procname(n-4,k)+procname(n-4,k-1) ; fi; end:
A141019 := proc(n) max(seq(A140996(n,k),k=0..n)) ; end: for n from 0 to 50 do printf("%d,",A141019(n)) ; od: # R. J. Mathar, Sep 19 2008
-
T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n - 1, 2, k == n-2, 4, k == n-3, 8, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-4, k-1]];
a[n_] := Table[T[n, k], {k, 0, n}] // Max;
Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jan 28 2024, after R. J. Mathar *)
Simplified definition and extended by
R. J. Mathar, Sep 19 2008
Comments