A320160
Number of series-reduced balanced rooted trees whose leaves form an integer partition of n.
Original entry on oeis.org
1, 2, 3, 6, 9, 19, 31, 63, 110, 215, 391, 773, 1451, 2879, 5594, 11173, 22041, 44136, 87631, 175155, 348186, 694013, 1378911, 2743955, 5452833, 10853541, 21610732, 43122952, 86192274, 172753293, 347114772, 699602332, 1414033078, 2866580670, 5826842877, 11874508385
Offset: 1
The a(1) = 1 through a(6) = 19 rooted trees:
1 2 3 4 5 6
(11) (12) (13) (14) (15)
(111) (22) (23) (24)
(112) (113) (33)
(1111) (122) (114)
((11)(11)) (1112) (123)
(11111) (222)
((11)(12)) (1113)
((11)(111)) (1122)
(11112)
(111111)
((11)(13))
((11)(22))
((12)(12))
((11)(112))
((12)(111))
((11)(1111))
((111)(111))
((11)(11)(11))
Cf.
A000081,
A000311,
A000669,
A001678,
A005804,
A048816,
A079500,
A119262,
A120803,
A141268,
A244925,
A319312.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
phy2[labs_]:=If[Length[labs]==1,labs,Union@@Table[Sort/@Tuples[phy2/@ptn],{ptn,Select[mps[Sort[labs]],Length[#1]>1&]}]];
Table[Sum[Length[Select[phy2[ptn],SameQ@@Length/@Position[#,_Integer]&]],{ptn,IntegerPartitions[n]}],{n,8}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(u=vector(n, n, 1), v=vector(n)); while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 25 2018
A050381
Number of series-reduced planted trees with n leaves of 2 colors.
Original entry on oeis.org
2, 3, 10, 40, 170, 785, 3770, 18805, 96180, 502381, 2667034, 14351775, 78096654, 429025553, 2376075922, 13252492311, 74372374366, 419651663108, 2379399524742, 13549601275893, 77460249369658, 444389519874841
Offset: 1
For n=2, the 2*a(2) = 6 elements are: A+A, A+B, B+B, A*A, A*B, B*B. - _Michael Somos_, Aug 07 2017
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From _N. J. A. Sloane_, Dec 22 2012
- N. J. A. Sloane, Transforms
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
Lone-child-avoiding rooted trees with n leaves are
A000669.
Lone-child-avoiding rooted trees with n vertices are
A001678.
The locally disjoint case is
A331874.
Semi-lone-child-avoiding rooted trees with n vertices are
A331934.
Matula-Goebel numbers of these trees are
A331935.
-
terms = 22;
B[x_] = x O[x]^(terms+1);
A[x_] = 1/(1 - x + B[x])^2;
Do[A[x_] = A[x]/(1 - x^k + B[x])^Coefficient[A[x], x, k] + O[x]^(terms+1) // Normal, {k, 2, terms+1}];
Join[{2}, Drop[CoefficientList[A[x], x]/2, 2]] (* Jean-François Alcover, Aug 17 2018, after Michael Somos *)
slaurte[n_]:=If[n==1,{o,{o}},Join@@Table[Union[Sort/@Tuples[slaurte/@ptn]],{ptn,Rest[IntegerPartitions[n]]}]];
Table[Length[slaurte[n]],{n,10}] (* Gus Wiseman, Feb 07 2020 *)
-
{a(n) = my(A, B); if( n<2, 2*(n>0), B = x * O(x^n); A = 1 / (1 - x + B)^2; for(k=2, n, A /= (1 - x^k + B)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Aug 07 2017 */
A330465
Number of non-isomorphic series-reduced rooted trees whose leaves are multisets with a total of n elements.
Original entry on oeis.org
1, 4, 14, 87, 608, 5573, 57876, 687938, 9058892, 130851823, 2048654450, 34488422057, 620046639452, 11839393796270, 238984150459124, 5079583100918338, 113299159314626360, 2644085918303683758, 64393240540265515110, 1632731130253043991252, 43013015553755764179000
Offset: 1
Non-isomorphic representatives of the a(3) = 14 trees:
((1)((1)(1))) ((1)((1)(2))) ((1)((2)(3))) ((2)((1)(1)))
((1)(1)(1)) ((1)(1)(2)) ((1)(2)(3)) ((2)(1,1))
((1)(1,1)) ((1)(1,2)) ((1)(2,3))
(1,1,1) (1,1,2) (1,2,3)
The version where leaves are atoms is
A318231.
The case with sets as leaves is
A330624.
The case with disjoint sets as leaves is
A141268.
The singleton-reduced version is
A330470.
Cf.
A000311,
A000669,
A004114,
A005804,
A007716,
A281118,
A289501,
A292504,
A316651,
A316652,
A318812,
A319312,
A330471,
A330474,
A330625,
A339645.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sEulerT(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n ) + polcoef(p,n)); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020
A007713
Number of 4-level rooted trees with n leaves.
Original entry on oeis.org
1, 1, 4, 10, 30, 75, 206, 518, 1344, 3357, 8429, 20759, 51044, 123973, 299848, 719197, 1716563, 4070800, 9607797, 22555988, 52718749, 122655485, 284207304, 655894527, 1508046031, 3454808143, 7887768997, 17949709753, 40719611684, 92096461012, 207697731344
Offset: 0
From _Gus Wiseman_, Oct 11 2018: (Start)
Also the number of multiset partitions of multiset partitions of integer partitions of n. For example, the a(1) = 1 through a(4) = 30 multiset partitions are:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((1)(1)) ((111)) ((22))
((1))((1)) ((1)(2)) ((112))
((1)(11)) ((1111))
((1))((2)) ((1)(3))
((1))((11)) ((2)(2))
((1)(1)(1)) ((1)(12))
((1))((1)(1)) ((2)(11))
((1))((1))((1)) ((1)(111))
((11)(11))
((1))((3))
((2))((2))
((1))((12))
((1)(1)(2))
((2))((11))
((1))((111))
((1)(1)(11))
((11))((11))
((1))((1)(2))
((2))((1)(1))
((1))((1)(11))
((1)(1)(1)(1))
((11))((1)(1))
((1))((1))((2))
((1))((1))((11))
((1))((1)(1)(1))
((1)(1))((1)(1))
((1))((1))((1)(1))
((1))((1))((1))((1))
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Cf.
A001970,
A047968,
A050342,
A089259,
A141268,
A258466,
A261049,
A319066,
A320328,
A320330,
A320331.
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b0:= etr(1): b1:= etr(b0): a:= etr(b1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
-
i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b0 = etr[Function[1]]; b1 = etr[b0]; a = etr[b1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
A320154
Number of series-reduced balanced rooted trees whose leaves form a set partition of {1,...,n}.
Original entry on oeis.org
1, 2, 5, 18, 92, 588, 4328, 35920, 338437, 3654751, 45105744, 625582147, 9539374171, 157031052142, 2757275781918, 51293875591794, 1007329489077804, 20840741773898303, 453654220906310222, 10380640686263467204, 249559854371799622350, 6301679967177242849680
Offset: 1
The a(1) = 1 through a(4) = 18 rooted trees:
(1) (12) (123) (1234)
((1)(2)) ((1)(23)) ((1)(234))
((2)(13)) ((12)(34))
((3)(12)) ((13)(24))
((1)(2)(3)) ((14)(23))
((2)(134))
((3)(124))
((4)(123))
((1)(2)(34))
((1)(3)(24))
((1)(4)(23))
((2)(3)(14))
((2)(4)(13))
((3)(4)(12))
((1)(2)(3)(4))
(((1)(2))((3)(4)))
(((1)(3))((2)(4)))
(((1)(4))((2)(3)))
Cf.
A000081,
A000311,
A000669,
A001678,
A005804,
A048816,
A079500,
A119262,
A120803,
A141268,
A244925,
A292504,
A300660,
A319312.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
gug[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[gug/@mtn]],{mtn,Select[sps[m],Length[#]>1&]}],m];
Table[Length[Select[gug[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,9}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; u=EulerT(u); while(u, v+=u; u=EulerT(u)-u); v}
seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018
A316655
Number of series-reduced rooted trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 33, 29, 44, 26, 90, 90, 261, 68, 168, 93, 766, 144, 197, 307, 575, 269, 2312, 428, 7068, 236, 625, 1017, 863, 954, 21965, 3409, 2342, 712
Offset: 1
Sequence of sets of trees begins:
1:
2: 1
3: (11)
4: (12)
5: (1(11)), (111)
6: (1(12)), (2(11)), (112)
7: (1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111)
8: (1(23)), (2(13)), (3(12)), (123)
9: (1(1(22))), (1(2(12))), (1(122)), (2(1(12))), (2(2(11))), (2(112)), ((11)(22)), ((12)(12)), (11(22)), (12(12)), (22(11)), (1122)
Cf.
A000081,
A000311,
A000669,
A001678,
A005804,
A056239,
A141268,
A181821,
A292504,
A296150,
A300660,
A304660.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
Table[Length[gro[Flatten[MapIndexed[Table[#2,{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]],{n,20}]
A316694
Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves form an integer partition of n.
Original entry on oeis.org
1, 1, 2, 3, 6, 13, 28, 62, 143, 338, 804, 1948, 4789, 11886, 29796, 75316, 191702, 491040, 1264926, 3274594, 8514784, 22229481, 58243870
Offset: 1
The a(7) = 28 rooted trees:
7,
(16),
(25),
(1(15)),
(34),
(1(24)), (2(14)), (4(12)), (124),
(1(1(14))),
(3(13)),
(2(23)),
(1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
(1(1(1(13)))),
(2(2(12))),
(1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
(1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
The semi-identity tree version is
A212804.
Not requiring local disjointness gives
A300660.
The non-identity tree version is
A316696.
This is the case of
A331686 where all leaves are singletons.
Locally disjoint rooted identity trees are
A316471.
Lone-child-avoiding locally disjoint rooted trees are
A331680.
Locally disjoint enriched identity p-trees are
A331684.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,disjointQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
Table[Length[nms[n]],{n,10}]
Updated with corrected terminology by
Gus Wiseman, Feb 06 2020
A316697
Number of series-reduced locally disjoint rooted trees with n unlabeled leaves.
Original entry on oeis.org
1, 1, 2, 5, 10, 24, 49, 112, 241, 548, 1218, 2839, 6547, 15572, 37179, 90555, 222065, 552576, 1384820, 3506475, 8936121, 22941280
Offset: 1
The a(5) = 10 trees:
(o(o(o(oo))))
(o(o(ooo)))
(o((oo)(oo)))
(o(oo(oo)))
(o(oooo))
(oo(o(oo)))
(oo(ooo))
(o(oo)(oo))
(ooo(oo))
(ooooo)
Missing from this list but counted by A000669 are ((oo)(o(oo))) and ((oo)(ooo)).
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
nms[n_]:=nms[n]=If[n==1,{{1}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],disjointQ],{ptn,Rest[IntegerPartitions[n]]}]];
Table[Length[nms[n]],{n,15}]
A331686
Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 2, 4, 8, 17, 41, 103, 280, 793, 2330, 6979, 21291
Offset: 1
The a(1) = 1 through a(5) = 17 trees:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(111) (22) (23)
((1)(2)) (112) (113)
(1111) (122)
((1)(3)) (1112)
((2)(11)) (11111)
((1)((1)(2))) ((1)(4))
((2)(3))
((1)(22))
((3)(11))
((2)(111))
((1)((1)(3)))
((2)((1)(2)))
((11)((1)(2)))
((1)((2)(11)))
((1)((1)((1)(2))))
The non-identity version is
A331678.
The case where the leaves are all singletons is
A316694.
Locally disjoint identity trees are
A316471.
Locally disjoint enriched identity p-trees are
A331684.
Lone-child-avoiding locally disjoint rooted semi-identity trees are
A212804.
Cf.
A000669,
A001678,
A005804,
A141268,
A300660,
A316697,
A319312,
A331679,
A331683,
A331783,
A331874,
A331875.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],UnsameQ@@#&&disjointQ[#]&],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]
A316696
Number of lone-child-avoiding locally disjoint rooted trees whose leaves form an integer partition of n.
Original entry on oeis.org
1, 2, 4, 11, 27, 80, 218, 654, 1923, 5924, 18310, 58176, 186341, 606814, 1993420, 6618160, 22134640
Offset: 1
The a(4) = 11 rooted trees:
4,
(13),
(22),
(1(12)), (2(11)), (112),
(1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111).
Matula-Goebel numbers of locally disjoint rooted trees are
A316495.
The case where all leaves are 1's is
A316697.
Lone-child-avoiding locally disjoint rooted trees are
A331680.
Cf.
A000669,
A001678,
A141268,
A316473,
A316652,
A331678,
A331686,
A331687,
A331871,
A331872,
A331874.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],disjointQ],{ptn,Rest[IntegerPartitions[n]]}],{n}];
Table[Length[nms[n]],{n,10}]
Comments