cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A082725 a(n) = n/A100762(n).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 1, 5, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 11, 23, 1, 25, 13, 1, 7, 29, 15, 31, 1, 33, 17, 35, 1, 37, 19, 39, 5, 41, 21, 43, 11, 5, 23, 47, 1, 49, 25, 51, 13, 53, 1, 55, 7, 57, 29, 59, 5, 61, 31, 7, 1, 65, 33, 67, 17, 69, 35, 71, 1, 73, 37, 25, 19, 77, 39, 79, 1, 1, 41
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2008

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Table[Function[{q, P}, n/Times @@ Power @@@ Select[q, First@ # <= P &]] @@ {#, Prime@ PrimePi[1 + Max@ #[[All, -1]] ]} &@ FactorInteger[n], {n, 2, 82}] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    A100549(n) = if(1==n,1,prime(primepi(1+vecmax(factor(n)[,2]))));
    A100762(n) = if(1==n,1,my(u = A100549(n), f=factor(n)); prod(i=1, #f~, if(f[i, 1]<=u, f[i, 1]^f[i, 2], 1)));
    A082725(n) = (n/A100762(n)); \\ Antti Karttunen, Nov 11 2018

A135130 Let n = Product_{p} p ^ e_p be the prime factorization of n and let M = max{e_p + 1 }. Then n is in the sequence iff for all primes q in the range 3 <= q <= M we have e_q >= Sum_{r} floor( log_q (e_r + 1) ).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2008

Keywords

Comments

A variant of A141586, which is a subsequence.

Crossrefs

A142593 Irregular triangle read by rows: row n gives successive exponents in prime factorization of A141900(n).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 1, 5, 1, 1, 6, 1, 1, 1, 7, 1, 1, 1, 8, 3, 1, 1, 9, 3, 1, 1, 10, 3, 1, 1, 1, 11, 3, 1, 1, 1, 12, 3, 1, 1, 1, 1, 13, 3, 1, 1, 1, 1, 14, 3, 1, 1, 1, 1, 15, 3, 1, 1, 1, 1, 16, 3, 1, 1, 1, 1, 1, 17, 3, 1, 1, 1, 1, 1, 18, 3, 1, 1, 1, 1, 1, 1, 19, 3, 1, 1, 1, 1, 1, 1, 20, 3, 1, 1
Offset: 1

Views

Author

David Applegate, Tim Kunisky (tkunisky(AT)gmail.com), Gerry Manoim (gerrymanoim(AT)gmail.com) and N. J. A. Sloane, Sep 25 2008

Keywords

Examples

			Triangle begins:
1
2 1
3 1
4 1 1
5 1 1
6 1 1 1
7 1 1 1
8 3 1 1
9 3 1 1
10 3 1 1 1
11 3 1 1 1
12 3 1 1 1 1
Row 8 = [8,3,1,1] because A141900(8) = 2^8*3^3*5*7 = 241920.
		

Crossrefs

A100933 Complement of A100417.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 50, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 98, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 143, 145
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Crossrefs

A141551 Numbers k with property that if d divides k, then tau(tau(d)) also divides k.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 180, 192, 204, 228, 240, 252, 276, 288, 300, 324, 348, 360, 372, 396, 444, 468, 480, 492, 516, 564, 576, 588, 600, 612, 636, 684, 708, 720, 732, 804, 828, 840, 852, 876, 900, 948, 960, 972, 996, 1044, 1068
Offset: 1

Views

Author

N. J. A. Sloane, Sep 12 2008

Keywords

Comments

tau() = A000005().

Crossrefs

Programs

  • Maple
    with(numtheory); isA141551 := proc(n) local dvs,d; dvs := divisors(n) ; for d in dvs do if not tau(tau(d)) in dvs then RETURN(false): fi; od: RETURN(true); end:
    t1:=[]; for n from 1 to 60000 do if isA141551(n) then t1:=[op(t1),n]; fi; od:
  • Mathematica
    aQ[n_] := AllTrue[Divisors[n], Divisible[n, DivisorSigma[0, DivisorSigma[0, #]]] &]; Select[Range[1000], aQ] (* Amiram Eldar, Jul 08 2019 *)

A143719 Let n = Product_{p} p ^ e_p be the prime factorization of n and let M = max{e_p}. Then n is in the sequence iff for all primes q in the range 2 <= q <= M we have e_q >= Sum_{r} floor( log_q (e_r + 1) ).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 100
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2008

Keywords

Comments

A variant of A141586, which is a subsequence.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,M;
      F:= ifactors(n)[2];
      M:= max(F[..,2]);
      andmap(proc(q) local e; padic:-ordp(n,q) >= add(floor(log[q](e+1)),e=F[..,2]) end proc, select(isprime, [$2..M]))
    end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Jan 29 2025

A143720 Complement of A143719.

Original entry on oeis.org

8, 9, 16, 18, 25, 27, 32, 40, 45, 49, 50, 54, 56, 60, 63, 64, 75, 80, 81, 84, 88, 90, 96, 98, 99, 104, 108, 112, 117, 120, 121, 125, 126, 128, 132, 135, 136, 140, 147, 150, 152, 153, 156, 160, 162, 168, 169, 171, 175, 176, 180, 184, 189, 192, 198, 200, 204, 207, 208, 216
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2008

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,M;
      F:= ifactors(n)[2];
      M:= max(F[..,2]);
      ormap(proc(q) local e; padic:-ordp(n,q) < add(floor(log[q](e+1)),e=F[..,2]) end proc, select(isprime, [$2..M]))
    end proc:
    select(filter, [$2..300]); # Robert Israel, Jan 29 2025

A208251 Number of refactorable numbers less than or equal to n.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 12 2013

Keywords

Comments

A number is refactorable if it is divisible by the number of its divisors.

Examples

			a(1) = 1 since 1 is the first refactorable number, a(2) = 2 since there are two refactorable numbers less than or equal to 2, a(3) through a(7) = 2 since the next refactorable number is 8.
		

Crossrefs

Programs

  • Maple
    with(numtheory) a:=n->sum((1 + floor(i/tau(i)) - ceil(i/tau(i))), i=1..n);
  • Mathematica
    Accumulate[Table[If[Divisible[n, DivisorSigma[0, n]], 1, 0], {n, 1,100}]] (* Amiram Eldar, Oct 11 2023 *)
  • PARI
    a(n) = sum(i=1, n, q = i/numdiv(i); 1+ floor(q) - ceil(q)); \\ Michel Marcus, Sep 10 2018

Formula

a(n) = Sum_{i=1..n} 1 + floor(i/d(i)) - ceiling(i/d(i)), where d(n) is the number of divisors of n.

A306263 Numbers k such that, for any divisor d of k, the Hamming weight of d divides k.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 32, 34, 36, 40, 42, 48, 60, 64, 66, 68, 72, 80, 84, 92, 96, 108, 116, 120, 126, 128, 132, 136, 144, 156, 160, 168, 172, 180, 184, 192, 204, 212, 216, 222, 228, 232, 240, 246, 252, 256, 264, 272, 276, 284, 288, 300, 310
Offset: 1

Views

Author

Rémy Sigrist, Mar 02 2019

Keywords

Comments

The Hamming weight of a number is given by A000120.
This sequence is a binary variant of A285815.
This sequence is infinite as it contains all powers of 2 (A000079).
All terms belong to A049445.
If k belongs to the sequence, then 2*k belongs to the sequence.
All terms except 1 are even. - Robert Israel, Mar 05 2019

Examples

			For n = 108:
- the divisors of 108 are 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108,
- the corresponding Hamming weights are 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 4,
- they all divide 108,
- hence 108 belongs to the sequence.
For n = 98:
- the divisors of 98 are 1, 2, 7, 14, 49, 98,
- the correspond Hamming weights are 1, 1, 3, 3, 3, 3,
- 3 does not divide 98,
- hence 98 does not belong to the sequence.
		

Crossrefs

Positions of zeros in A324393.

Programs

  • Magma
    [k:k in [1..310]| forall{d:d in Divisors(k)| k mod &+Intseq(d,2) eq 0}]; // Marius A. Burtea, Dec 30 2019
  • Maple
    filter:= proc(n) local F;
      F:= map(convert,map(convert,numtheory:-divisors(n),base,2),`+`);
      andmap(t -> n mod t = 0, F)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 05 2019
  • Mathematica
    Select[Range@ 310, With[{k = #}, AllTrue[Divisors@ k, Mod[k, DigitCount[#, 2, 1]] == 0 &]] &] (* Michael De Vlieger, Mar 05 2019 *)
  • PARI
    is(n) = fordiv(n,d,if (n%hammingweight(d), return (0))); return ( )
    

A174457 Infinitely refactorable numbers: numbers k such that each iteration under the map x -> A000005(x) produces a divisor of k.

Original entry on oeis.org

1, 2, 12, 24, 36, 60, 72, 84, 96, 108, 132, 156, 180, 204, 228, 240, 252, 276, 288, 348, 360, 372, 396, 444, 468, 480, 492, 504, 516, 564, 600, 612, 636, 640, 672, 684, 708, 720, 732, 792, 804, 828, 852, 864, 876, 936, 948, 972, 996, 1044, 1056, 1068, 1116, 1152
Offset: 1

Views

Author

Matthew Vandermast, Dec 04 2010

Keywords

Comments

In other words, let d^1(n) = A000005(n) and, for all positive integers k, let d^(k+1)(n) = A000005(d^k(n)). Sequence lists numbers n with the property that every such value of d^k(n) divides n.
A141586 is a subsequence. Is A110821 a subsequence?
Not a subsequence of A141551: 504 is the smallest term in this sequence not member of A141551.
a(n) is even for all n, since for any n >= 2, d^k(n) = 2 for some k. Proof: {d^k(n)} is a nonincreasing sequence of k, so it must stablize at a fixed point of the map x -> A000005(x), namely x = 1 or 2. But d^k(n) = 1 for some k implies that n = 1. - Jianing Song, Apr 20 2022

Examples

			9 has 3 divisors, and 9 is a multiple of 3. But 3 has 2 divisors, and 9 is not a multiple of 2. Hence, 9 does not belong to this sequence.
36 has 9 divisors, 9 has 3 divisors, 3 has 2 divisors, and 9, 3, and 2 are all divisors of 36. (Since 2 has 2 divisors, all further steps produce a value of 2.) Hence, 36 belongs to this sequence.
		

Crossrefs

Cf. A036459 (number of steps of the map), A000005 (d(n): number of divisors).
Cf. A010553 (d(d(n))), A036450 (d^3(n)), A036452 (d^4(n)), A036453 (d^5(n)).
Subsequence of A033950 (refactorable numbers: d(n) | n) and A141113 (d(d(n))| n).

Programs

  • PARI
    is_A174457(n, d=n)=!until(d<3, n%(d=numdiv(d)) && return) \\ M. F. Hasler, Dec 05 2010, updated PARI syntax Apr 16 2022

Extensions

Edited by M. F. Hasler, Apr 16 2022
Previous Showing 11-20 of 24 results. Next