A142986
a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n + 1)*(n + 2)*a(n).
Original entry on oeis.org
1, 8, 70, 656, 6648, 72864, 862128, 10977408, 149892480, 2187106560, 33985025280, 560578268160, 9786290088960, 180315565516800, 3497645442816000, 71256899266560000, 1521414754578432000, 33975929212194816000
Offset: 1
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
-
a142986 n = a142986_list !! (n-1)
a142986_list = 1 : 8 : zipWith (+)
(map (* 8) $ tail a142986_list)
(zipWith (*) (drop 2 a002378_list) a142986_list)
-- Reinhard Zumkeller, Jul 17 2015
-
p := n -> (n^4+2*n^2)/3: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
-
RecurrenceTable[{a[1]==1,a[2]==8,a[n]==8a[n-1]+n(n-1)a[n-2]},a,{n,20}] (* Harvey P. Dale, Apr 08 2015 *)
A142987
a(1) = 1, a(2) = 10, a(n+2) = 10*a(n+1) + (n + 1)*(n + 2)*a(n).
Original entry on oeis.org
1, 10, 106, 1180, 13920, 174600, 2330640, 33084000, 498646080, 7964020800, 134491276800, 2396163513600, 44942274316800, 885524502643200, 18293122632960000, 395457106963968000, 8930300425804800000
Offset: 1
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
-
a142987 n = a142987_list !! (n-1)
a142987_list = 1 : 10 : zipWith (+)
(map (* 10) $ tail a142987_list)
(zipWith (*) (drop 2 a002378_list) a142987_list)
-- Reinhard Zumkeller, Jul 17 2015
-
p := n -> (2*n^5+10*n^3+3*n)/15: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
-
RecurrenceTable[{a[1]==1,a[2]==10,a[n+2]==10a[n+1]+(n+1)(n+2)a[n]},a,{n,20}] (* Harvey P. Dale, Mar 23 2021 *)
A142989
a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n).
Original entry on oeis.org
1, 5, 33, 240, 1992, 18360, 187416, 2093760, 25462080, 334592640, 4728412800, 71488811520, 1151817408000, 19699405286400, 356504125824000, 6805868977152000, 136702533123072000, 2881808345235456000
Offset: 1
-
p := n -> (2*n-1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
-
RecurrenceTable[{a[1]==1,a[2]==5,a[n]==5a[n-1]+(n-1)(n+1)a[n-2]},a,{n,20}] (* Harvey P. Dale, Jun 17 2013 *)
A142990
a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n).
Original entry on oeis.org
1, 7, 57, 504, 4896, 51912, 598392, 7459200, 100085760, 1439061120, 22083719040, 360371773440, 6232667212800, 113901166310400, 2193425619840000, 44398776748032000, 942498015750144000, 20938290999865344000
Offset: 1
A142991
a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1)+(n+1)*(n+3)*a(n).
Original entry on oeis.org
1, 9, 89, 936, 10560, 127800, 1657080, 22965120, 339252480, 5326819200, 88651670400, 1559600179200, 28929882240000, 564490975104000, 11560712397696000, 247991610230784000, 5561409662613504000
Offset: 1
-
p := n -> (2*n^3-3*n^2+7*n-3)/15: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
-
RecurrenceTable[{a[1]==1,a[2]==9,a[n+2]==9a[n+1]+(n+1)(n+3)a[n]},a,{n,20}] (* Harvey P. Dale, Jul 18 2020 *)
A142977
Table of coefficients in the expansion of the rational function 1/{(1-x)^2 - y*(1+x)^2}.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 10, 19, 4, 1, 14, 51, 44, 5, 1, 18, 99, 180, 85, 6, 1, 22, 163, 476, 501, 146, 7, 1, 26, 243, 996, 1765, 1182, 231, 8, 1, 30, 339, 1804, 4645, 5418, 2471, 344, 9, 1, 34, 451, 2964, 10165, 17718, 14407, 4712, 489, 10
Offset: 0
The square array begins
n\k| 0...1....2.....3.....4.......5
------------------------------------
.0.| 1...2....3.....4......5......6 ... A000027
.1.| 1...6...19....44.....85....146 ... A005900
.2.| 1..10...51...180....501...1182 ... A069038
.3.| 1..14...99...476...1765...5418 ... A099193
.4.| 1..18..163...996...4645..17718 ... A099196
.5.| 1..22..243..1804..10165..46530 ... A300624
...
-
with(combinat): T:=(n,k) -> add(binomial(2n,k-j)*binomial(2n+j+1,j), j = 0..k): for n from 0 to 9 do seq(T(n,k), k = 0..9) end do;
Restored missing program. -
Peter Bala, Oct 02 2008
A156136
A triangle of polynomial coefficients related to Mittag-Leffler polynomials: p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x).
Original entry on oeis.org
1, 2, 2, 3, 12, 4, 4, 36, 48, 8, 5, 80, 240, 160, 16, 6, 150, 800, 1200, 480, 32, 7, 252, 2100, 5600, 5040, 1344, 64, 8, 392, 4704, 19600, 31360, 18816, 3584, 128, 9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256, 10, 810, 17280, 141120, 508032
Offset: 0
1;
2, 2;
3, 12, 4;
4, 36, 48, 8;
5, 80, 240, 160, 16;
6, 150, 800, 1200, 480, 32;
7, 252, 2100, 5600, 5040, 1344, 64;
8, 392, 4704, 19600, 31360, 18816, 3584, 128;
9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256;
10, 810, 17280, 141120, 508032, 846720, 645120, 207360, 23040, 512;
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 75-76
-
Clear[t0, p, x, n, m];
p[x_, n_] = Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x);
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 1, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}];
Flatten[%]
Comments