cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A142986 a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 8, 70, 656, 6648, 72864, 862128, 10977408, 149892480, 2187106560, 33985025280, 560578268160, 9786290088960, 180315565516800, 3497645442816000, 71256899266560000, 1521414754578432000, 33975929212194816000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 4 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142986 n = a142986_list !! (n-1)
    a142986_list = 1 : 8 : zipWith (+)
                           (map (* 8) $ tail a142986_list)
                           (zipWith (*) (drop 2 a002378_list) a142986_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    p := n -> (n^4+2*n^2)/3: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==8,a[n]==8a[n-1]+n(n-1)a[n-2]},a,{n,20}] (* Harvey P. Dale, Apr 08 2015 *)

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (n^4 + 2*n^2)/3 = A014820(n).
Recurrence: a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 8 and b(2) = 66.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(8 + 1*2/(8 + 2*3/(8 + 3*4/(8 + ... + n*(n - 1)/8)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(8 + 1*2/(8 + 2*3/(8 + 3*4/(8 + ... + n*(n - 1)/(8 + ...))))) = 17/3 - 8*log(2), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).

A142987 a(1) = 1, a(2) = 10, a(n+2) = 10*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 10, 106, 1180, 13920, 174600, 2330640, 33084000, 498646080, 7964020800, 134491276800, 2396163513600, 44942274316800, 885524502643200, 18293122632960000, 395457106963968000, 8930300425804800000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 5 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142987 n = a142987_list !! (n-1)
    a142987_list = 1 : 10 : zipWith (+)
                            (map (* 10) $ tail a142987_list)
                            (zipWith (*) (drop 2 a002378_list) a142987_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    p := n -> (2*n^5+10*n^3+3*n)/15: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==10,a[n+2]==10a[n+1]+(n+1)(n+2)a[n]},a,{n,20}] (* Harvey P. Dale, Mar 23 2021 *)

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (2*n^5 + 10*n^3 + 3*n)/15 = A069038(n).
Recurrence: a(1) = 1, a(2) = 10, a(n+2) = 10*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 10 and b(2) = 102.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(10 + 1*2/(10 + 2*3/(10 + 3*4/(10 + .. +n*(n - 1)/(10))))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(10 + 1*2/(10 + 2*3/(10 + 3*4/(10 + ... + n*(n - 1)/(10 + ...))))) = 10*log(2) - 41/6, where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).

A142989 a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n).

Original entry on oeis.org

1, 5, 33, 240, 1992, 18360, 187416, 2093760, 25462080, 334592640, 4728412800, 71488811520, 1151817408000, 19699405286400, 356504125824000, 6805868977152000, 136702533123072000, 2881808345235456000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1)+(n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142990 (m=2) and A142991 (m=3).

Crossrefs

Programs

  • Maple
    p := n -> (2*n-1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==5,a[n]==5a[n-1]+(n-1)(n+1)a[n-2]},a,{n,20}] (* Harvey P. Dale, Jun 17 2013 *)

Formula

a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (2*n-1)/3. Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 5, b(2) = 28. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/5)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/(5+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 17/2-12*log(2).

A142990 a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n).

Original entry on oeis.org

1, 7, 57, 504, 4896, 51912, 598392, 7459200, 100085760, 1439061120, 22083719040, 360371773440, 6232667212800, 113901166310400, 2193425619840000, 44398776748032000, 942498015750144000, 20938290999865344000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 2 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1)+(n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142989 (m=1) and A142991 (m=3).

Crossrefs

Programs

  • Maple
    p := n -> (n^2-n+1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);

Formula

a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (n^2-n+1)/3. Recurrence: a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 7, b(2) = 52. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(7+1*3/(7+2*4/(7+3*5/(7+...+(n-1)*(n+1)/7)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(7+1*3/(7+2*4/(7+3*5/(7+...+(n-1)*(n+1)/(7+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 24*log(2)-33/2.

A142991 a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1)+(n+1)*(n+3)*a(n).

Original entry on oeis.org

1, 9, 89, 936, 10560, 127800, 1657080, 22965120, 339252480, 5326819200, 88651670400, 1559600179200, 28929882240000, 564490975104000, 11560712397696000, 247991610230784000, 5561409662613504000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 3 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1) + (n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142989 (m=1) and A142990 (m=2).

Crossrefs

Programs

  • Maple
    p := n -> (2*n^3-3*n^2+7*n-3)/15: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==9,a[n+2]==9a[n+1]+(n+1)(n+3)a[n]},a,{n,20}] (* Harvey P. Dale, Jul 18 2020 *)

Formula

a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (2*n^3-3*n^2+7*n-3)/15. Recurrence: a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 9, b(2) = 84. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(9+1*3/(9+2*4/(9+3*5/(9+...+(n-1)*(n+1)/9)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(9+1*3/(9+2*4/(9+3*5/(9+...+(n-1)*(n+1)/(9+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 167/6 - 40*log(2).

A142977 Table of coefficients in the expansion of the rational function 1/{(1-x)^2 - y*(1+x)^2}.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 10, 19, 4, 1, 14, 51, 44, 5, 1, 18, 99, 180, 85, 6, 1, 22, 163, 476, 501, 146, 7, 1, 26, 243, 996, 1765, 1182, 231, 8, 1, 30, 339, 1804, 4645, 5418, 2471, 344, 9, 1, 34, 451, 2964, 10165, 17718, 14407, 4712, 489, 10
Offset: 0

Views

Author

Peter Bala, Jul 15 2008

Keywords

Comments

The row entries are the figurate numbers of the odd dimensional cross polytopes. See A142978 for the complete table of figurate numbers of n-dimensional cross polytopes. The rows are the partial sums of the even-numbered rows of the square array of Delannoy numbers A008288.

Examples

			The square array begins
 n\k| 0...1....2.....3.....4.......5
------------------------------------
 .0.| 1...2....3.....4......5......6 ... A000027
 .1.| 1...6...19....44.....85....146 ... A005900
 .2.| 1..10...51...180....501...1182 ... A069038
 .3.| 1..14...99...476...1765...5418 ... A099193
 .4.| 1..18..163...996...4645..17718 ... A099196
 .5.| 1..22..243..1804..10165..46530 ... A300624
 ...
		

Crossrefs

Cf. A005900 (row 1), A008288, A069038 (row 2), A099193 (row 3), A099196 (row 4), A300624 (row 5), A142978, A142983.

Programs

  • Maple
    with(combinat): T:=(n,k) -> add(binomial(2n,k-j)*binomial(2n+j+1,j), j = 0..k): for n from 0 to 9 do seq(T(n,k), k = 0..9) end do;

Formula

T(n,k) = Sum_{j = 0..k} C(2*n, k-j)*C(2*n+j+1, j).
O.g.f.: 1/{(1 - x)^2 - y*(1 + x)^2} = Sum_{n, k >= 0} T(n,k)*x^k*y^n = 1/(1 - y) * Sum_{m >= 0} U(m, (1 + y)/(1 - y))*x^m, where U(m, y) denotes the m-th Chebyshev polynomial of the second kind.
O.g.f. row n: (1 + x)^(2*n)/(1 - x)^(2*n+2).
O.g.f. column k: 1/(1 - y)*U(k, (1 + y)/(1 - y)).
The entries in the n-th row appear in the series acceleration formula for the constant log(2): Sum_{k >= 1} (-1)^(k+1)/(T(n,k)*T(n,k+1)) = 1 + (4*n + 2)*( log(2) - (1 - 1/2 + 1/3 - ... + 1/(2*n + 1)) ).
For example, n = 1 gives log(2) = 4/6 + (1/6)*( 1/(1*6) - 1/(6*19) + 1/(19*44) - 1/(44*85) + ... ). See A142983 for further details.

Extensions

Restored missing program. - Peter Bala, Oct 02 2008

A156136 A triangle of polynomial coefficients related to Mittag-Leffler polynomials: p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x).

Original entry on oeis.org

1, 2, 2, 3, 12, 4, 4, 36, 48, 8, 5, 80, 240, 160, 16, 6, 150, 800, 1200, 480, 32, 7, 252, 2100, 5600, 5040, 1344, 64, 8, 392, 4704, 19600, 31360, 18816, 3584, 128, 9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256, 10, 810, 17280, 141120, 508032
Offset: 0

Views

Author

Roger L. Bagula, Feb 04 2009

Keywords

Examples

			1;
2, 2;
3, 12, 4;
4, 36, 48, 8;
5, 80, 240, 160, 16;
6, 150, 800, 1200, 480, 32;
7, 252, 2100, 5600, 5040, 1344, 64;
8, 392, 4704, 19600, 31360, 18816, 3584, 128;
9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256;
10, 810, 17280, 141120, 508032, 846720, 645120, 207360, 23040, 512;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 75-76

Crossrefs

A142983, A142978, A047781 (row sums).

Programs

  • Mathematica
    Clear[t0, p, x, n, m];
    p[x_, n_] = Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x);
    Table[FullSimplify[ExpandAll[p[x, n]]], {n, 1, 10}];
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}];
    Flatten[%]

Formula

p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x);
p(x,n)=n Hypergeometric2F1[1 - n, 1 - n, 2, 2 x];
t(n,m)=coefficiemts(p(x,n))
T(n,m) = 2^m*A103371(n,m). - R. J. Mathar, Dec 05 2017
Previous Showing 11-17 of 17 results.