cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A143493 Unsigned 4-Stirling numbers of the first kind.

Original entry on oeis.org

1, 4, 1, 20, 9, 1, 120, 74, 15, 1, 840, 638, 179, 22, 1, 6720, 5944, 2070, 355, 30, 1, 60480, 60216, 24574, 5265, 625, 39, 1, 604800, 662640, 305956, 77224, 11515, 1015, 49, 1, 6652800, 7893840, 4028156, 1155420, 203889, 22680, 1554, 60, 1, 79833600
Offset: 4

Views

Author

Peter Bala, Aug 20 2008

Keywords

Comments

See A049459 for a signed version of the array. The unsigned 4-Stirling numbers of the first kind count the permutations of the set {1,2,...,n} into k disjoint cycles, with the restriction that the elements 1, 2, 3 and 4 belong to distinct cycles. This is the case r = 4 of the unsigned r-Stirling numbers of the first kind. For other cases see abs(A008275) (r = 1), A143491 (r = 2) and A143492 (r = 3). See A143496 for the corresponding triangle of 4-Stirling numbers of the second kind.
The theory of r-Stirling numbers of both kinds is developed in [Broder]. For details of the related 4-Lah numbers see A143499.
With offset n=0 and k=0, this is the Sheffer triangle (1/(1-x)^4,-log(1-x)) (in the umbral notation of S. Roman's book this would be called Sheffer for (exp(-4*t),1-exp(-t))). See the e.g.f given below. Compare also with the e.g.f. for the signed version A049459. - Wolfdieter Lang, Oct 10 2011
With offset n=0 and k=0: triangle T(n,k), read by rows, given by (4,1,5,2,6,3,7,4,8,5,9,6,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 31 2011

Examples

			Triangle begins
  n\k|     4     5     6     7     8     9
  ========================================
  4  |     1
  5  |     4     1
  6  |    20     9     1
  7  |   120    74    15     1
  8  |   840   638   179    22     1
  9  |  6720  5944  2070   355    30     1
  ...
T(6,5) = 9. The 9 permutations of {1,2,3,4,5,6} with 5 cycles such that 1, 2, 3 and 4 belong to different cycles are: (1,5)(2)(3)(4)(6), (1,6)(2)(3)(4)(5), (2,5)(1)(3)(4)(6), (2,6)(1)(3)(4)(5), (3,5)(1)(2)(4)(6), (3,6)(1)(2)(4)(5), (4,5)(1)(2)(3)(6), (4,6)(1)(2)(3)(5) and (5,6)(1)(2)(3)(4).
		

Crossrefs

Cf. A001715 - A001719 (column 4 - column 8), A001720 (row sums), A008275, A049459 (signed version), A143491, A143492, A143496, A143499.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-4)! * add(binomial(n-j-1,3)*abs(stirling1(j,k-4))/j!,j = k-4..n-4): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;

Formula

T(n,k) = (n-4)! * Sum_{j = k-4 .. n-4} C(n-j-1,3)*|stirling1(j,k-4)|/j!.
Recurrence relation: T(n,k) = T(n-1,k-1) + (n-1)*T(n-1,k) for n > 4, with boundary conditions: T(n,3) = T(3,n) = 0 for all n; T(4,4) = 1; T(4,k) = 0 for k > 4.
Special cases:
T(n,4) = (n-1)!/3!.
T(n,5) = (n-1)!/3!*(1/4 + ... + 1/(n-1)).
T(n,k) = sum {4 <= i_1 < ...< i_(n-k) < n} (i_1*i_2* ...*i_(n-k)). For example, T(7,5) = Sum_{4 <= i < j < 7} (i*j) = 4*5 + 4*6 + 5*6 = 74.
Row g.f.: Sum_{k = 4..n} T(n,k)*x^k = x^4*(x+4)*(x+5)* ... *(x+n-1).
E.g.f. for column (k+4): Sum_{n = k..inf} T(n+4,k+4)*x^n/n! = 1/k!*1/(1-x)^4 * (log(1/(1-x)))^k.
E.g.f.: (1/(1-t))^(x+4) = Sum_{n = 0..inf} Sum_{k = 0..n} T(n+4,k+4)*x^k*t^n/n! = 1 + (4+x)*t/1! + (20+9*x+x^2)*t^2/2! + .... This array is the matrix product St1 * P^3, where St1 denotes the lower triangular array of unsigned Stirling numbers of the first kind, abs(A008275) and P denotes Pascal's triangle, A007318. The row sums are n!/4! ( A001720 ). The alternating row sums are (n-2)!/2!.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n+4,i) = |f(n,i,3)|, for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

A144698 Triangle of 4-Eulerian numbers.

Original entry on oeis.org

1, 1, 4, 1, 13, 16, 1, 32, 113, 64, 1, 71, 531, 821, 256, 1, 150, 2090, 6470, 5385, 1024, 1, 309, 7470, 40510, 65745, 33069, 4096, 1, 628, 25191, 221800, 612295, 592884, 194017, 16384, 1, 1267, 81853, 1113919, 4835875, 7843369, 4915423, 1101157, 65536
Offset: 4

Views

Author

Peter Bala, Sep 19 2008

Keywords

Comments

This is the case r = 4 of the r-Eulerian numbers, denoted by A(r;n,k), defined as follows. Let [n] denote the ordered set {1,2,...,n} and let r be a nonnegative integer. Let Permute(n,n-r) denote the set of injective maps p:[n-r] -> [n], which we think of as permutations of n numbers taken n-r at a time. Clearly, |Permute(n,n-r)| = n!/r!. We say that the permutation p has an excedance at position i, 1 <= i <= n-r, if p(i) > i. Then the r-Eulerian number A(r;n,k) is defined as the number of permutations in Permute(n,n-r) with k excedances. Thus the 4-Eulerian numbers are the number of permutations in Permute(n,n-4) with k excedances. For other cases see A008292 (r = 0 and r = 1), A144696 (r = 2), A144697 (r = 3) and A144699 (r = 5).
An alternative interpretation of the current array due to [Strosser] involves the 4-excedance statistic of a permutation (see also [Foata & Schutzenberger, Chapter 4, Section 3]). We define a permutation p in Permute(n,n-4) to have a 4-excedance at position i (1 <= i <= n-4) if p(i) >= i + 4.
Given a permutation p in Permute(n,n-4), define ~p to be the permutation in Permute(n,n-4) that takes i to n+1 - p(n-i-3). The map ~ is a bijection of Permute(n,n-4) with the property that if p has (resp. does not have) an excedance in position i then ~p does not have (resp. has) a 4-excedance at position n-i-3. Hence ~ gives a bijection between the set of permutations with k excedances and the set of permutations with (n-k) 4-excedances. Thus reading the rows of this array in reverse order gives a triangle whose entries are the number of permutations in Permute(n,n-4) with k 4-excedances.
Example: Represent a permutation p:[n-4] -> [n] in Permute(n,n-4) by its image vector (p(1),...,p(n-4)). In Permute(10,6) the permutation p = (1,2,4,10,3,6) does not have an excedance in the first two positions (i = 1 and 2) or in the final two positions (i = 5 and 6). The permutation ~p = (5,8,1,7,9,10) has 4-excedances only in the first two positions and the final two positions.

Examples

			Triangle begins
  ===+=============================================
  n\k|  0      1      2      3      4      5      6
  ===+=============================================
   4 |  1
   5 |  1      4
   6 |  1     13     16
   7 |  1     32    113     64
   8 |  1     71    531    821    256
   9 |  1    150   2090   6470   5385   1024
  10 |  1    309   7470  40510  65745  33069   4096
  ...
T(6,1) = 13: We represent a permutation p:[n-4] -> [n] in Permute(n,n-4) by its image vector (p(1),...,p(n-4)). The 13 permutations in Permute(6,2) having 1 excedance are (1,3), (1,4), (1,5), (1,6), (3,2), (4,2), (5,2), (6,2), (2,1), (3,1), (4,1), (5,1) and (6,1).
		

References

  • R. Strosser, Séminaire de théorie combinatoire, I.R.M.A., Université de Strasbourg, 1969-1970.

Crossrefs

Cf. A001720 (row sums), A000302 (right diagonal).

Programs

  • Magma
    m:=4; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..m+10]]; // G. C. Greubel, Jun 04 2022
    
  • Maple
    with(combinat):
    T:= (n,k) -> 1/4!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-3)*(j+2)*(j+3)*(j+4),j = 0..k):
    for n from 4 to 12 do
    seq(T(n,k),k = 0..n-4)
    end do;
  • Mathematica
    T[n_, k_] /; 0 < k <= n-4 := T[n, k] = (k+1) T[n-1, k] + (n-k) T[n-1, k-1];
    T[, 0] = 1; T[, _] = 0;
    Table[T[n, k], {n, 4, 12}, {k, 0, n-4}] // Flatten (* Jean-François Alcover, Nov 11 2019 *)
  • SageMath
    m=4 # A144698
    def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )
    flatten([[T(n,k) for k in (0..n-m)] for n in (m..m+10)]) # G. C. Greubel, Jun 04 2022

Formula

T(n,k) = (1/4!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-3)*(j+2)*(j+3)*(j+4).
T(n,n-k) = (1/4!)*Sum_{j = 4..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-3)*(j-1)*(j-2)*(j-3).
Recurrence relation:
T(n,k) = (k + 1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 4, T(4,k) = 0 for k >= 1. Special cases: T(n,n-4) = 4^(n-4); T(n,n-5) = 5^(n-3) - 4^(n-3) - (n-3)*4^(n-4).
E.g.f. (with suitable offsets): 1/4*[(1 - x)/(1 - x*exp(t - t*x))]^4 = 1/4 + x*t + (x + 4*x^2)*t^2/2! + (x + 13*x^2 + 16*x^3)*t^3/3! + ... .
The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x + 1)*R_n(x) + x*(1 - x)*d/dx(R_n(x)) with R_4(x) = 1. It follows that the polynomials R_n(x) for n >= 5 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
The (n+3)-th row generating polynomial = (1/4!)*Sum_{k = 1..n} (k+3)!*Stirling2(n,k)*x^(k-1)*(1-x)^(n-k).
For n >= 4,
1/4*(x*d/dx)^(n-3) (1/(1-x)^4) = x/(1-x)^(n+1) * Sum_{k = 0..n-4} T(n,k)*x^k,
1/4*(x*d/dx)^(n-3) (x^4/(1-x)^4) = 1/(1-x)^(n+1) * Sum_{k = 4..n} T(n,n-k)*x^k,
1/(1-x)^(n+1) * Sum {k = 0..n-4} T(n,k)*x^k = (1/4!) * Sum_{m = 0..inf} (m+1)^(n-3)*(m+2)*(m+3)*(m+4)*x^m,
1/(1-x)^(n+1) * Sum {k = 4..n} T(n,n-k)*x^k = (1/4!) * Sum_{m = 4..inf} m^(n-3)*(m-1)*(m-2)*(m-3)*x^m,
Worpitzky-type identities:
Sum_{k = 0..n-4} T(n,k)*binomial(x+k,n) = (1/4!)*x^(n-3)*(x-1)*(x-2)*(x-3).
Sum_{k = 4..n} T(n,n-k)* binomial(x+k,n) = (1/4!)*(x+1)^(n-3)*(x+2)*(x+3)*(x+4).
Relation with Stirling numbers (Frobenius-type identities):
T(n+3,k-1) = (1/4!) * Sum_{j = 0..k} (-1)^(k-j)* (j+3)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;
T(n+3,k-1) = 1/4! * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+3)!* binomial(n-j,k)*S(4;n+4,j+4) for n,k >= 1 and
T(n+4,k) = 1/4! * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+4)!* binomial(n-j,k)*S(4;n+4,j+4) for n,k >= 0, where S(4;n,k) denotes the 4-Stirling numbers of the second kind A143496(n,k).
For n >=4, the shifted row polynomial t*R(n,t) = (1/4)*D^(n-3)(f(x,t)) evaluated at x = 0, where D is the operator (1-t)*(1+x)*d/dx and f(x,t) = (1+x*t/(t-1))^(-4). - Peter Bala, Apr 22 2012

A016103 Expansion of 1/((1-4x)(1-5x)(1-6x)).

Original entry on oeis.org

1, 15, 151, 1275, 9751, 70035, 481951, 3216795, 20991751, 134667555, 852639151, 5343198315, 33212784151, 205111785075, 1260114546751, 7708980203835, 46999640806951, 285743822630595, 1733261544204751
Offset: 0

Views

Author

Keywords

Comments

2*a(n-2) = 6^n - 2*5^n + 4^n is the number of 3 X n {0,1}-matrices such that: (a) first and second row have a common 1, (b) first and third row have a common 1, (c) second and third row have no common 1. - Andi Fugard and Vladeta Jovovic, Jul 26 2008
This is the third column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See A193685 for general comments. - Wolfdieter Lang, Oct 08 2011

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-5*x)*(1-6*x)))); // Vincenzo Librandi, Jun 24 2013
    
  • Magma
    I:=[1, 15, 151]; [n le 3 select I[n] else 15*Self(n-1)-74*Self(n-2)+120*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013
  • Mathematica
    CoefficientList[Series[1 / ((1 - 4 x) (1 - 5 x) (1 - 6 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 24 2013 *)
  • PARI
    Vec(1/((1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

a(n) = 2^(3 + 2*n) + 2^(1 + n) * 3^(2 + n) - 5^(2 + n). - Andi Fugard, Jul 22 2008
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,4), n >= 2. - Milan Janjic, Apr 26 2009
O.g.f.: 1/((1-4*x)*(1-5*x)*(1-6*x)).
E.g.f.: (d^2/dx^2)(exp(4*x)*((exp(x)-1)^2)/2!). See the Sheffer triangle comment above. - Wolfdieter Lang, Oct 08 2011
a(n) = 15*a(n-1) - 74*a(n-2) + 120*a(n-3). - Vincenzo Librandi, Jun 24 2013

A143499 Triangle of unsigned 4-Lah numbers.

Original entry on oeis.org

1, 8, 1, 72, 18, 1, 720, 270, 30, 1, 7920, 3960, 660, 44, 1, 95040, 59400, 13200, 1320, 60, 1, 1235520, 926640, 257400, 34320, 2340, 78, 1, 17297280, 15135120, 5045040, 840840, 76440, 3822, 98, 1, 259459200, 259459200, 100900800, 20180160, 2293200
Offset: 4

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

This is the case r = 4 of the unsigned r-Lah numbers L(r;n,k). The unsigned 4-Lah numbers count the partitions of the set {1,2,...,n} into k ordered lists with the restriction that the elements 1, 2, 3 and 4 belong to different lists. For other cases see A105278 (r = 1), A143497 (r = 2 and comments on the general case) and A143498 (r = 3).
The unsigned 4-Lah numbers are related to the 4-Stirling numbers: the lower triangular array of unsigned 4-Lah numbers may be expressed as the matrix product St1(4) * St2(4), where St1(4) = A143493 and St2(4) = A143496 are the arrays of 4-restricted Stirling numbers of the first and second kind respectively. An alternative factorization for the array is as St1 * P^6 * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277.

Examples

			Triangle begins
n\k|......4......5......6......7......8......9
==============================================
4..|......1
5..|......8......1
6..|.....72.....18......1
7..|....720....270.....30......1
8..|...7920...3960....660.....44......1
9..|..95040..59400..13200...1320.....60......1
...
T(5,4) = 8. The partitions of {1,2,3,4,5} into 4 ordered lists, such that the elements 1, 2, 3 and 4 lie in different lists, are: {1}{2}{3}{4,5} and {1}{2}{3}{5,4}, {1}{2}{4}{3,5} and {1}{2}{4}{5,3}, {1}{3}{4}{2,5} and {1}{3}{4}{5,2}, {2}{3}{4}{1,5} and {2}{3}{4}{5,1}.
		

Crossrefs

Cf. A007318, A008275, A008277, A049388 (column 4), A105278 (unsigned Lah numbers), A143493, A143496, A143497, A143498.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-4)!/(k-4)!*binomial(n+3,k+3): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;
  • Mathematica
    T[n_, k_] := (n-4)!/(k-4)!*Binomial[n+3, k+3]; Table[T[n, k], {n, 4, 10}, {k, 4, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)

Formula

T(n,k) = (n-4)!/(k-4)!*binomial(n+3,k+3), n,k >= 4.
Recurrence: T(n,k) = (n+k-1)*T(n-1,k) + T(n-1,k-1) for n,k >= 4, with the boundary conditions: T(n,k) = 0 if n < 4 or k < 4; T(4,4) = 1.
E.g.f. for column k: Sum_{n >= k} T(n,k)*t^n/(n-4)! = 1/(k-4)!*t^k/(1-t)^(k+4) for k >= 4.
E.g.f: Sum_{n = 4..inf} Sum_{k = 4..n} T(n,k)*x^k*t^n/(n-4)! = (x*t)^4/(1-t)^8*exp(x*t/(1-t)) = (x*t)^4*(1 + (8+x)*t +(72+18*x+x^2)*t^2/2! + ...).
Generalized Lah identity: (x+7)*(x+8)*...*(x+n+2) = Sum_{k = 4..n} T(n,k)*(x-1)*(x-2)*...*(x-k+4).
The polynomials 1/n!*Sum_{k = 4..n+4} T(n+4,k)*(-x)^(k-4) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,7,x).
Array = A132493* A143496 = abs(A008275) * ( A007318 )^6 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (8,18,30,44, ... ) on the main subdiagonal and zeros everywhere else.

A143399 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=4.

Original entry on oeis.org

0, 0, 0, 0, 1, 30, 545, 7770, 95781, 1071630, 11192665, 111095490, 1060634861, 9822843030, 88799732385, 787259974410, 6869327386741, 59158464019230, 503954741177705, 4254156112792530, 35637875826743421, 296621138907400230, 2455329298857576625
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is also the number of forests of 4 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.
This gives also the fifth column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See the e.g.f. given below. See also A193685 for Sheffer comments and the hint for the proof in the o.g.f. formula there. - Wolfdieter Lang, Oct 08 2011

Crossrefs

4th column of A143395.

Programs

  • Maple
    a:= proc(k::nonnegint) local M; M := Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x, u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1, k+1] end(4): seq(a(n), n=0..30);
  • Mathematica
    LinearRecurrence[{30,-355,2070,-5944,6720},{0,0,0,0,1},30] (* Harvey P. Dale, Mar 12 2013 *)

Formula

G.f.: x^4/((1-4x)(1-5x)(1-6x)(1-7x)(1-8x)).
a(n) = 30a(n-1) -355a(n-2) +2070a(n-3) -5944a(n-4) +6720a(n-5).
E.g.f.: exp(4*x)*((exp(x)-1)^4)/4!. - Wolfdieter Lang, Oct 08 2011
Previous Showing 11-15 of 15 results.