cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A243133 64*n^7 - 112*n^5 + 56*n^3 - 7*n.

Original entry on oeis.org

0, 1, 5042, 114243, 937444, 4656965, 17057046, 50843527, 130576328, 299537289, 628855930, 1229215691, 2265463212, 3974443213, 6686381534, 10850138895, 17062657936, 26102926097, 38970776898, 56930852179, 81562047860, 114812765781, 159062294182
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(7,n).

Crossrefs

Programs

  • Magma
    [64*n^7-112*n^5+56*n^3-7*n: n in [0..40]];
  • Mathematica
    Table[ChebyshevT[7, n], {n, 0, 40}] (* or *)  Table[64 n^7 - 112 n^5 + 56 n^3 - 7 n, {n, 0, 40}]
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,1,5042,114243,937444,4656965,17057046,50843527},40] (* Harvey P. Dale, Mar 27 2015 *)

Formula

G.f.: (x + 5034*x^2 + 73935*x^3 + 164620*x^4 + 73935*x^5 + 5034*x^6 + x^7)/(1 - x)^8.
a(n) = n*(64*n^6 - 112*n^4 + 56*n^2 - 7).
a(0)=0, a(1)=1, a(2)=5042, a(3)=114243, a(4)=937444, a(5)=4656965, a(6)=17057046, a(7)=50843527, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)- 70*a(n-4)+ 56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Harvey P. Dale, Mar 27 2015

A243135 256*n^9 - 576*n^7 + 432*n^5 - 120*n^3 + 9*n.

Original entry on oeis.org

0, 1, 70226, 3880899, 58106404, 456335045, 2421980406, 9863382151, 33165873224, 96450076809, 250283080090, 592479412811, 1300371936876, 2678768828749, 5228741809214, 9743412645135, 17438019715216, 30122754096401, 50428155189474, 82094249361619
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

References

  • Chebyshev polynomial of the first kind T(9,n).

Crossrefs

Programs

  • Magma
    [256*n^9-576*n^7+432*n^5-120*n^3+9*n: n in [0..20]];
  • Maple
    a:= n-> simplify(ChebyshevT(9, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 31 2014
  • Mathematica
    Table[ChebyshevT[9, n], {n, 0, 20}] (* or *) Table[256 n^9 - 576 n^7 + 432 n^5 - 120 n^3 + 9 n, {n, 0, 20}]

Formula

G.f.: x *(1 + 70216*x + 3178684*x^2 + 22457464*x^3 + 41484550*x^4 + 22457464*x^5 + 3178684*x^6 + 70216*x^7 + x^8)/(1 - x)^10.
a(n) = n*(4*n^2 - 3)*(64*n^6 - 96*n^4 + 36*n^2 - 3).

A322830 a(n) = 32*n^3 + 48*n^2 + 18*n + 1.

Original entry on oeis.org

1, 99, 485, 1351, 2889, 5291, 8749, 13455, 19601, 27379, 36981, 48599, 62425, 78651, 97469, 119071, 143649, 171395, 202501, 237159, 275561, 317899, 364365, 415151, 470449, 530451, 595349, 665335, 740601, 821339, 907741, 999999, 1098305, 1202851, 1313829, 1431431, 1555849
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2018

Keywords

Examples

			(sqrt(2) + sqrt(1))^6 = 99 + 70*sqrt(2) = 99 + sqrt(99^2 - 1). So a(1) = 99.
		

Crossrefs

Column 3 of A322790.
Cf. A144129.

Programs

  • GAP
    a:=List([0..40],n->32*n^3+48*n^2+18*n+1);; Print(a); # Muniru A Asiru, Jan 02 2019
  • Maple
    [32*n^3+48*n^2+18*n+1$n=0..40]; # Muniru A Asiru, Jan 02 2019
  • Mathematica
    CoefficientList[Series[(1 + x) (1 + 94 x + x^2)/(1 - x)^4, {x, 0, 36}], x] (* or *)
    Array[ChebyshevT[3, 2 # + 1] &, 37, 0] (* Michael De Vlieger, Jan 01 2019 *)
    Table[32n^3+48n^2+18n+1,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,99,485,1351},40] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    {a(n) = 32*n^3+48*n^2+18*n+1}
    
  • PARI
    {a(n) = polchebyshev(3, 1, 2*n+1)}
    
  • PARI
    Vec((1 + x)*(1 + 94*x + x^2) / (1 - x)^4 + O(x^40)) \\ Colin Barker, Dec 27 2018
    

Formula

a(n) + sqrt(a(n)^2 - 1) = (sqrt(n+1) + sqrt(n))^6.
a(n) - sqrt(a(n)^2 - 1) = (sqrt(n+1) - sqrt(n))^6.
a(n) = A144129(2*n+1) = T_3(2*n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind.
From Colin Barker, Dec 27 2018: (Start)
G.f.: (1 + x)*(1 + 94*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
a(n) = (2*n + 1)*(16*n^2 + 16*n + 1). - Bruno Berselli, Jan 02 2019

A369922 a(n) = 8*n^3 - 6*n - 1.

Original entry on oeis.org

-1, 1, 51, 197, 487, 969, 1691, 2701, 4047, 5777, 7939, 10581, 13751, 17497, 21867, 26909, 32671, 39201, 46547, 54757, 63879, 73961, 85051, 97197, 110447, 124849, 140451, 157301, 175447, 194937, 215819, 238141, 261951, 287297, 314227, 342789, 373031, 405001
Offset: 0

Views

Author

DarĂ­o Clavijo, Feb 05 2024

Keywords

Comments

This polynomial (evaluated over the rationals) arises in demonstrating the impossibility of trisecting an arbitrary angle by compass and straightedge.

Crossrefs

Cf. A144129.

Programs

Formula

a(n) = 2*A144129(n) - 1.
From Elmo R. Oliveira, Sep 04 2025: (Start)
G.f.: (-1 + 5*x + 41*x^2 + 3*x^3)/(-1+x)^4.
E.g.f.: (-1 + 2*x + 24*x^2 + 8*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Previous Showing 11-14 of 14 results.