A168372
a(n) = n^5*(n^4 + 1)/2.
Original entry on oeis.org
0, 1, 272, 9963, 131584, 978125, 5042736, 20185207, 67125248, 193739769, 500050000, 1179054371, 2580014592, 5302435333, 10330792304, 19222059375, 34360262656, 59294648177, 99180589968, 161345086939, 256001600000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
A168663
a(n) = n^7*(n^6 + 1)/2.
Original entry on oeis.org
0, 1, 4160, 798255, 33562624, 610390625, 6530486976, 48444916975, 274878955520, 1270935305649, 5000005000000, 17261365815551, 53496620605440, 151437584670385, 396857439333824, 973097619609375, 2251799947902976
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
A168664
a(n) = n^7*(n^7 + 1)/2.
Original entry on oeis.org
0, 1, 8256, 2392578, 134225920, 3051796875, 39182222016, 339111948196, 2199024304128, 11438398618965, 50000005000000, 189874926535206, 641959250190336, 1968688224223903, 5556003465485760, 14596463098125000, 36028797153181696, 84188913484869801
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005, -3003,1365,-455,105,-15,1).
-
List([0..30], n -> n^7*(1 + n^7)/2); # G. C. Greubel, Nov 15 2018
-
[n^7*(n^7+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 28 2011
-
A168664:=n->n^7*(n^7+1)/2: seq(A168664(n), n=0..20); # Wesley Ivan Hurt, Oct 30 2014
-
f[n_]:=Module[{c=n^7},c (c+1)/2]; f/@Range[0,30] (* Harvey P. Dale, Mar 19 2011 *)
-
a(n)=n^7*(n^7+1)/2 \\ Charles R Greathouse IV, Jul 28 2016
-
[n^7*(1 + n^7)/2 for n in range(40)] # G. C. Greubel, Nov 15 2018
A071235
a(n) = (n^12 + n^6)/2.
Original entry on oeis.org
0, 1, 2080, 266085, 8390656, 122078125, 1088414496, 6920702425, 34359869440, 141215033961, 500000500000, 1569215074141, 4458051717120, 11649044974645, 28346959952416, 64873174640625, 140737496743936, 291311130683665, 578415707719200, 1106657483056021
Offset: 0
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
-
List([0..40], n -> (n^12 + n^6)/2); # G. C. Greubel, Nov 15 2018
-
[n^6*(n^2+1)*(n^4-n^2+1)/2: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
-
Table[(n^12 + n^6)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
-
vector(40, n, n--; ) \\ G. C. Greubel, Nov 15 2018
-
for n in range(0,20): print(int((n**12 + n**6)/2), end=', ') # Stefano Spezia, Nov 15 2018
-
[n^6*(1 + n^6)/2 for n in range(40)] # G. C. Greubel, Nov 15 2018
A168194
a(n) = n^4*(n^3 + 1)/2.
Original entry on oeis.org
0, 1, 72, 1134, 8320, 39375, 140616, 412972, 1050624, 2394765, 5005000, 9750906, 17926272, 31388539, 52725960, 85455000, 134250496, 205211097, 306162504, 447001030, 640080000, 900641511, 1247296072, 1702552644, 2293401600
Offset: 0
- Vincenzo Librandi and Bruno Berselli, Table of n, a(n) for n = 0..1000 (first 480 terms from Vincenzo Librandi).
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
A168627
a(n) = n^6*(n^5 + 1)/2.
Original entry on oeis.org
0, 1, 1056, 88938, 2099200, 24421875, 181421856, 988722196, 4295098368, 15690795525, 50000500000, 142656721086, 371505678336, 896082610423, 2024786349600, 4324883625000, 8796101410816, 17135960222601
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).
-
List([0..30], n -> n^6*(1 + n^5)/2); # G. C. Greubel, Nov 15 2018
-
[n^6*(1 + n^5)/2: n in [0..30]]; // G. C. Greubel, Nov 15 2018
-
Table[n^6*(n^5+1)/2, {n, 0, 30}] (* G. C. Greubel, Jul 27 2016 *)
LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{0,1,1056,88938,2099200,24421875,181421856,988722196,4295098368,15690795525,50000500000,142656721086},20] (* Harvey P. Dale, Nov 21 2024 *)
-
vector(30, n, n--; n^6*(1 + n^5)/2) \\ G. C. Greubel, Nov 15 2018
-
[n^6*(1 + n^5)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
A170779
a(n) = n^8*(n^7 + 1)/2.
Original entry on oeis.org
0, 1, 16512, 7177734, 536903680, 15258984375, 235093332096, 2373783637372, 17592194433024, 102945587570685, 500000050000000, 2088624191887266, 7703511002284032, 25592946914910739, 77784048516800640
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
-
[n^8*(n^7+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 26 2011
-
Table[n^8*(n^7+1)/2, {n,0,30}] (* G. C. Greubel, Dec 05 2017 *)
-
for(n=0, 30, print1(n^8*(n^7+1)/2, ", ")) \\ G. C. Greubel, Dec 05 2017
-
[n^8*(n^7+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
A170780
a(n) = n^8*(n^8 + 1)/2.
Original entry on oeis.org
0, 1, 32896, 21526641, 2147516416, 76294140625, 1410555793536, 16616468167201, 140737496743936, 926510115949281, 5000000050000000, 22974865038965521, 92442129662509056, 332708304999455281, 1088976669642580096
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
-
List([0..30], n -> n^8*(n^8+1)/2); # G. C. Greubel, Nov 15 2018
-
[n^8*(n^8+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 26 2011
-
Table[n^8*(n^8+1)/2, {n, 0, 30}] (* G. C. Greubel, Dec 05 2017 *)
-
for(n=0, 30, print1(n^8*(n^8+1)/2, ", ")) \\ G. C. Greubel, Dec 05 2017
-
for n in range(0,20): print(int(n**8*(n**8 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
-
[n^8*(n^8+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
A170790
a(n) = n^9*(n^8 + 1)/2.
Original entry on oeis.org
0, 1, 65792, 64579923, 8590065664, 381470703125, 8463334761216, 116315277170407, 1125899973951488, 8338591043543529, 50000000500000000, 252723515428620731, 1109305555950108672, 4325207964992918653
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (18,-153,816,-3060,8568,-18564, 31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).
-
List([0..30], n -> n^9*(n^8+1)/2); # G. C. Greubel, Nov 15 2018
-
[n^9*(n^8+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
-
Table[(n^9 (n^8+1))/2,{n,0,20}] (* Harvey P. Dale, Oct 03 2016 *)
-
for(n=0,30, print1(n^9*(n^8+1)/2, ", ")) \\ G. C. Greubel, Dec 06 2017
-
for n in range(0,20): print(int(n**9*(n**8 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
-
[n^9*(n^8+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
A170791
a(n) = n^9*(n^9 + 1)/2.
Original entry on oeis.org
0, 1, 131328, 193720086, 34359869440, 1907349609375, 50779983373056, 814206819132028, 9007199321849856, 75047317842209805, 500000000500000000, 2779958657925089586, 13311666643022512128, 56227703481280946251
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (19,-171,969,-3876,11628,-27132, 50388,-75582,92378,-92378,75582,-50388,27132,-11628,3876,-969,171, -19,1).
-
List([0..30], n -> n^9*(n^9 + 1)/2); # G. C. Greubel, Nov 15 2018
-
[n^9*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
-
f[n_]:=Module[{n9=n^9},(n9(n9+1))/2]; Array[f,20,0] (* Harvey P. Dale, Nov 24 2012 *)
Table[n^9*(n^9+1)/2, {n,0,30}] (* G. C. Greubel, Dec 06 2017 *)
-
for(n=0,30, print1(n^9*(n^9+1)/2, ", ")) \\ G. C. Greubel, Dec 06 2017
-
for n in range(0,20): print(int(n**9*(n**9 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
-
[n^9*(1 + n^9)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
Comments