cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A193350 Sum of even divisors of tau(n).

Original entry on oeis.org

0, 2, 2, 0, 2, 6, 2, 6, 0, 6, 2, 8, 2, 6, 6, 0, 2, 8, 2, 8, 6, 6, 2, 14, 0, 6, 6, 8, 2, 14, 2, 8, 6, 6, 6, 0, 2, 6, 6, 14, 2, 14, 2, 8, 8, 6, 2, 12, 0, 8, 6, 8, 2, 14, 6, 14, 6, 6, 2, 24, 2, 6, 8, 0, 6, 14, 2, 8, 6, 14, 2, 24, 2, 6, 8, 8, 6, 14, 2, 12, 0, 6, 2, 24, 6, 6, 6, 14, 2, 24, 6, 8, 6, 6, 6, 24, 2, 8, 8, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(24) = 14 because tau(24) = 8 and the sum of the 3 even divisors {2, 4, 8} is 14.
		

Crossrefs

Cf. A000290 (the positions of zeros).

Programs

  • Mathematica
    Table[Total[Select[Divisors[DivisorSigma[0,n]], EvenQ[ # ]&]], {n, 74}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,(1-d%2)*d);

Formula

a(n) = A146076(A000005(n)). - Antti Karttunen, May 28 2017
a(n) = A062069(n) - A193349(n). - Amiram Eldar, Jan 27 2025

Extensions

Data section extended to 100 terms by Antti Karttunen, May 28 2017

A266537 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the twice odd numbers (A016825) interleaved with 2*k-1 zeros, and the first positive element of column k is in the row A002378(k), with T(1,1) = 0.

Original entry on oeis.org

0, 2, 0, 6, 0, 10, 2, 0, 0, 14, 0, 0, 0, 18, 6, 0, 0, 22, 0, 2, 0, 0, 0, 26, 10, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 34, 14, 6, 0, 0, 0, 38, 0, 0, 2, 0, 0, 0, 0, 42, 18, 0, 0, 0, 0, 0, 0, 46, 0, 10, 0, 0, 0, 0, 0, 50, 22, 0, 0, 0, 0, 0, 0, 54, 0, 0, 6, 0, 0, 0, 0, 58, 26, 14, 0, 2
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2016

Keywords

Comments

Gives an identity for A146076. Alternating sum in row n equals the sum of even divisors of n.
Even-indexed rows of the triangle give A236106.
If T(n,k) = 6 then T(n+2,k+1) = 2, the first element of the column k+1.

Examples

			Triangle begins:
0;
2;
0;
6;
0;
10,  2;
0,   0;
14,  0;
0,   0;
18,  6;
0,   0;
22,  0,  2;
0,   0,  0;
26, 10,  0;
0,   0,  0;
30,  0,  0;
0,   0,  0;
34, 14,  6;
0,   0,  0;
38,  0,  0,  2;
0,   0,  0,  0;
42, 18,  0,  0;
0,   0,  0,  0;
46,  0, 10,  0;
0,   0,  0,  0;
50, 22,  0,  0;
0,   0,  0,  0;
54,  0,  0,  6;
0,   0,  0,  0;
58, 26, 14,  0,  2;
...
For n = 12 the divisors of 12 are 1, 2, 3, 4, 6, 12 and the sum of even divisors of 12 is 2 + 4 + 6 + 12 = 24. On the other hand, the 12th row of the triangle is 22, 0, 2, so the alternating row sum is 22 - 0 + 2 = 24, equaling the sum of even divisors of 12.
		

Crossrefs

Formula

T(n,k) = 0, if n is odd.
T(n,k) = 2*A196020(n/2,k) = A236106(n/2,k), if n is even.

A281707 Even integers k such that phi(sum of even divisors of k) = sum of odd divisors of k.

Original entry on oeis.org

2, 6, 14, 42, 62, 186, 254, 434, 762, 1302, 1778, 5334, 7874, 16382, 23622, 49146, 55118, 114674, 165354, 262142, 344022, 507842, 786426, 1048574, 1523526, 1834994, 2080514, 3145722, 3554894, 5504982, 6241542, 7340018, 8126402, 10664682, 14563598, 22020054
Offset: 1

Views

Author

Michel Lagneau, Jan 28 2017

Keywords

Comments

The number of divisors of a(n) is a power of 2, and sum of even divisors = 2^(m+1), sum of odd divisors = 2^m for some m.
a(n) == 2, 6 (mod 8) or a(n) == 2, 6 (mod 12).
a(n) is of the form 2*p1*p2*...pk where p1, p2, ..., pk are Mersenne primes = 3, 7, 31, 127, 8191, ... (see A000668).

Examples

			62 is a term because its divisors are 1, 2, 31 and 62, the sum of the even divisors of 62 = 62 + 2 = 2^6, the sum of odd divisors = 1 + 31 = 2^5, and phi(2^6) = 2^5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2 to 10^6 do:
    x:=divisors(n):n1:=nops(x):s0:=0:s1:=0:
       for k from 1 to n1 do:
        if irem(x[k],2)=0
         then
         s0:=s0+ x[k]:
         else
         s1:=s1+ x[k]:
        fi:
      od:
        if s1=phi(s0)
         then
         print(n):
         else
        fi:
    od:
  • Mathematica
    Select[2 * Range[10^6], (sodd = (s = DivisorSigma[1, #])/(2^(IntegerExponent[#, 2]+1) - 1)) == EulerPhi[s - sodd] &] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    isok(n) = eulerphi(sumdiv(n, d, d*((d % 2)==0))) == sumdiv(n, d, d*(d%2)); \\ Michel Marcus, Jan 28 2017

Extensions

a(1) inserted by Amiram Eldar, Aug 12 2023

A360156 a(n) is the sum of the even unitary divisors of 2*n.

Original entry on oeis.org

2, 4, 8, 8, 12, 16, 16, 16, 20, 24, 24, 32, 28, 32, 48, 32, 36, 40, 40, 48, 64, 48, 48, 64, 52, 56, 56, 64, 60, 96, 64, 64, 96, 72, 96, 80, 76, 80, 112, 96, 84, 128, 88, 96, 120, 96, 96, 128, 100, 104, 144, 112, 108, 112, 144, 128, 160, 120, 120, 192, 124, 128
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2023

Keywords

Comments

a(n) is the unitary analog of A146076(2*n).

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^(e + 1) * usigma[n/2^e]]; Array[a, 100]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + 1)} ;
    a(n) = {my(e = valuation(n, 2)); (1 << (e+1)) * usigma(n >> e); }

Formula

a(n) = Sum_{even d|(2*n), gcd(d, 2*n/d)=1} d.
a(n) = A034448(2*n) - A192066(2*n).
a(n) = A192066(2*n) - A328258(2*n).
a(n) = A171977(n) * A192066(n).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (7*zeta(3)).
Dirichlet g.f. of b(n): (zeta(s)*zeta(s-1)/zeta(2*s-1))*(2^(s+1)-2)/(2^(2*s)-2), where b(n) is the sum of the even unitary divisors of n: b(n) = a(n/2) if n is even and 0 otherwise.

A361879 Sum of even middle divisors of n, where "middle divisor" means a divisor in the half-open interval [sqrt(n/2), sqrt(n*2)).

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 10, 0, 0, 0, 4, 0, 6, 0, 4, 0, 0, 0, 6, 0, 0, 0, 8, 0, 6, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 6, 0, 8, 0, 0, 0, 16, 0, 0, 0, 8, 0, 6, 0, 0, 0, 10, 0, 14, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 12, 0, 0, 0, 8, 0, 10, 0, 0, 0, 0, 0, 20
Offset: 1

Views

Author

Omar E. Pol, Mar 27 2023

Keywords

Comments

Sum of even divisors of n in the half-open interval [sqrt(n/2), sqrt(n*2)).
Also sum of even numbers in the n-th row of A299761.

Examples

			For n = 18 the middle divisor of 18 is [3]. There are no even middle divisors of 18 so a(18) = 0.
For n = 20 the middle divisors of 20 are [4, 5]. There is only one even middle divisor of 20 so a(20) = 4.
For n = 24 the middle divisors of 24 are [4, 6]. There are two even middle divisors of 24 so a(24) = 4 + 6 = 10.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local D;
         if n::odd then return 0 fi;
         D:= select(proc(d) local s; if d::odd then return false fi; s:= d^2; s >= n/2 and s < 2*n end proc, numtheory:-divisors(n)); convert(D,`+`) end proc:
    map(f, [$1..100]); # Robert Israel, Mar 18 2024
  • Mathematica
    Table[DivisorSum[n, # &, And[EvenQ[#], Sqrt[n/2] <= # < Sqrt[2 n]] &], {n, 120}] (* Michael De Vlieger, Mar 28 2023 *)
  • PARI
    a(n) = vecsum(select(x->((x >= sqrt(n/2)) && (x < sqrt(n*2)) && !(x%2)), divisors(n))); \\ Michel Marcus, Mar 31 2023

Formula

a(n) = A071090(n) - A361824(n).

A193388 Sum of even divisors of phi(n).

Original entry on oeis.org

0, 0, 2, 2, 6, 2, 8, 6, 8, 6, 12, 6, 24, 8, 14, 14, 30, 8, 26, 14, 24, 12, 24, 14, 36, 24, 26, 24, 48, 14, 48, 30, 36, 30, 56, 24, 78, 26, 56, 30, 84, 24, 64, 36, 56, 24, 48, 30, 64, 36, 62, 56, 84, 26, 84, 56, 78, 48, 60, 30, 144, 48, 78, 62, 120, 36, 96
Offset: 1

Views

Author

Michel Lagneau, Jul 25 2011

Keywords

Examples

			a(13) = 24 because phi(13) = 12 and the sum of the 4 even divisors { 2, 4, 6, 12} is 24.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[EulerPhi[n]], EvenQ[ # ]&]], {n, 58}]
  • PARI
    A193388(n) = { my(s=eulerphi(n)); sumdiv(s,d,(!(d%2))*d); }; \\ Antti Karttunen, Dec 05 2017

Formula

a(n) = A146076(A000010(n)) = A062402(n) - A193454(n). - Antti Karttunen, Dec 05 2017

A193526 Sum of even divisors of sopf(n).

Original entry on oeis.org

0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 14, 2, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 2, 16, 0, 24, 0, 0, 0, 30, 0, 0, 24, 0, 0, 14, 0, 0, 0, 0, 0, 36, 0, 0, 0, 30, 0, 24, 0, 0, 12, 0, 0, 12, 2, 26, 30, 0, 0, 28, 16, 0, 0, 0, 0, 14, 0, 26, 26, 0, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 29 2011

Keywords

Comments

Sopf(n) is the sum of the distinct primes dividing n (A008472).

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A146076(A008472(n)). - Antti Karttunen, Dec 23 2018

A255891 Numbers n such that the sum of the even divisors of n is equal to m! and the sum of the odd divisors of n is equal to k! for some integers m and k.

Original entry on oeis.org

2, 4, 240, 348, 368, 380, 19364665320, 20210069880, 20328267960, 20673770040, 20681420760, 20735165880, 20940748920, 20959618680, 21135474360, 21196014840, 21256222680, 21302746920, 21380630040, 21405023640, 21426252120, 21465896760, 21522002040, 21544621560
Offset: 1

Views

Author

Michel Lagneau, Mar 09 2015

Keywords

Comments

Numbers n such that A000593(n) = m! and A146076(n) = k! for some m and k.
Is this sequence finite? No further terms less than 10^6.
No further terms less than 10^9. - Michel Marcus, Mar 10 2015
sigma(a(25711)) >= 29! + 30!. - Hiroaki Yamanouchi, Mar 26 2015

Examples

			240 is in the sequence because A000593(240)= 24 = 4! and A146076(240)= 720 = 6!
		

Crossrefs

Programs

  • Maple
    for n from 2 by 2  to 20000 do:
       y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
         for k from 1 to n1 do:
           if irem(y[k],2)=0
            then
            s0:=s0+ y[k]:
            else
            s1:=s1+ y[k]:
          fi:
         od:
         ii:=0:
            for a from 1 to 20 while(ii=0)do:
             if s0=a!
              then
               for b from 1 to 20 while(ii=0) do:
                 if s1=b!
                  then
                  ii:=1:print(n):
                  else
                 fi:
               od:
              fi:
            od:
          od:
  • Mathematica
    fQ[n_] := Block[{d = Divisors@ n, lst = Array[Factorial, {449}]}, MemberQ[lst, Plus @@ Select[d, EvenQ]] && MemberQ[lst, Plus @@ Select[d, OddQ]]]; Select[Range@10000, fQ] (* Michael De Vlieger, Mar 10 2015 *)
  • PARI
    isoks(s) = {if (s==1, return (1)); f = 1; for (k=2, s, f *= k; if (f == s, return (1)); if (f > s, return (0)););}
    isok(n) = my(sod = sumdiv(n, d, d*(d%2))); my(sed = sigma(n) - sod); sod && sed && isoks(sed) && isoks(sod); \\ Michel Marcus, Mar 10 2015

Extensions

a(7)-a(24) from Hiroaki Yamanouchi, Mar 26 2015

A263695 Even numbers such that the sum of the even divisors and the sum of the odd divisors are a square or a cube.

Original entry on oeis.org

6, 14, 434, 636, 748, 762, 4620, 5964, 6204, 6324, 6580, 6820, 7084, 7660, 8404, 8636, 8804, 9010, 9710, 11342, 11920, 23622, 29820, 31020, 31620, 32844, 35420, 36204, 38964, 39804, 40044, 42020, 43180, 44020, 45724, 46004, 47564, 48484, 49146, 50644, 53444
Offset: 1

Views

Author

Michel Lagneau, May 28 2016

Keywords

Comments

It seems that the two sums are never both a square or a cube.
Conjecture [False!]: All squares belonging to a pair are associated with a unique cube. Conversely, all cubes are associated with a unique square.
The corresponding pairs (sum of even divisors, sum of odd divisors) are (2^3, 2^2), (4^2, 2^3), (8^3, 16^2), (36^2, 6^3), (36^2, 6^3), (32^2, 8^3), 11 times the pair (24^3, 48^2), 3 times the pair (108^2, 18^3), (30^3, 30^2), (32^3, 128^2), 16 times the pair (288^2, 24^3),...
We observe several classes of numbers that generate identical pairs, for example:
{636, 748} => pair (36^2, 6^3);
{4620, 5964, 6204, 6324,... } => pair (24^3, 48^2);
{9010, 9710, 11342} => pair (108^2, 18^3);
{29820, 31020, 31620, 32844, 35420,... } => pair (288^2, 24^3);
{69576, 72168, 87752, 98552,...} => pair (56^3, 112^2);
The conjecture above is false. Consider for example the triples of numbers {69576, 938184, 7505472} or {958528, 952520, 12382760}. For the first one the (even, odd) sum of divisors pairs are (56^3, 112^2), (1568^2, 56^3), and (4704^2, 56^3). - Giovanni Resta, May 28 2016

Examples

			434 is in the sequence because the divisors are {1, 2, 7, 14, 31, 62, 217, 434} => sum of even divisors = 2+14+62+434 = 512 = 8^3 and sum of odd divisors = 1+7+31+217 = 256 = 16^2.
636 is in the sequence because the divisors are {1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636} => sum of even divisors = 2+4+6+12+106+212+318+636 = 1296 = 36^2 and sum of odd divisors = 1+3+53+159 = 216 = 6^3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2  to 500000 do:
       y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
         for k from 1 to n1 do:
           if irem(y[k], 2)=0
            then
            s0:=s0+ y[k]:
            else
            s1:=s1+ y[k]:
          fi:
         od:
         ii:=0:
            for a from 1 to 1000 while(ii=0)do:
            for i from 2 to 3 do:
             if s0=a^i
              then
               for b from 1 to 1000 while(ii=0) do:
                 if s1=b^(5-i)
                  then
                  ii:=1:printf(`%d, `,n):
                  else
                 fi:
               od:
              fi:
            od:
          od:
         od:
  • Mathematica
    es[n_] := 2 DivisorSigma[1, n/2]; os[n_] := DivisorSigma[1, n] - es[n]; powQ[n_] := Or @@ IntegerQ /@ (n^(1/{2, 3})); Select[2 Range[10^4], powQ@ es@ # && powQ@ os@ # &] (* Giovanni Resta, May 28 2016 *)
  • PARI
    isA002760(n)=issquare(n) || ispower(n,3)
    is(n)=n%2==0 && isA002760(2*sigma(n/2)) && isA002760(sigma(n>>valuation(n,2))) \\ Charles R Greathouse IV, Jun 08 2016

A293356 Even integers k such that lambda(sum of even divisors of k) = sum of odd divisors of k.

Original entry on oeis.org

2, 20, 40, 48, 68, 176, 212, 304, 328, 944, 1360, 1712, 1888, 2320, 2344, 2864, 4240, 7120, 7888, 7984, 8448, 8960, 11920, 12032, 14416, 14592, 15536, 17492, 20224, 21520, 23984, 24208, 24592, 25904, 26112, 28160, 29440, 30464, 34560, 35920, 36352, 40528, 41296
Offset: 1

Views

Author

Michel Lagneau, Oct 07 2017

Keywords

Comments

Or even integers k such that A002322(A146076(k)) = A000593(k).
Observations:
The primes a(n)/4: {5, 17, 53, 4373, 13121, ...} are of the form 2*3^m - 1, m > 0 (A079363).
The primes a(n)/8: {5, 41, 293, 4941257, ...} are of the form 6*7^m - 1, m = 0, 1, ... (primes in A198688).
The set of the primes {a(n)/16} = {3, 11, 19, 59, 107, 179, 499, 971, 1499, 1619, ...} contains the primes of the form 4*3^(2m+1) - 1 = {11, 107, 971, ...}, m = 0, 1, ...

Examples

			68 is in the sequence because A002322(A146076(68)) = A002322(108) = 18 and A000593(68) = 18.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2 to 10^6 do:
    x:=divisors(n):n1:=nops(x):s0:=0:s1:=0:
       for k from 1 to n1 do:
        if type(x[k],even)
         then
         s0:=s0+ x[k]:
         else
         s1:=s1+ x[k]:
        fi:
      od:
        if s1=lambda(s0)
         then
         printf(`%d, `,n):
         else
        fi:
    od:
  • Mathematica
    fQ[n_] :=
    Block[{d = Divisors@n},
      CarmichaelLambda[Plus @@ Select[d, EvenQ]] ==
    Plus @@ Select[d, OddQ]]; Select[2 Range@2000, fQ] (* Robert G. Wilson v, Oct 07 2017 *)
  • PARI
    is(n)=if(n%2, return(0)); my(s=valuation(n,2),d=sigma(n>>s)); lcm(znstar(d*(2^(s+1)-2))[2])==d \\ Charles R Greathouse IV, Dec 26 2017

Extensions

Edited by Robert Israel, Dec 28 2017
Previous Showing 21-30 of 33 results. Next