A147305 Numbers B of the constrained search for ABC records described in A147306.
5, 11, 17, 23, 35, 47, 49, 125, 343, 361, 625, 2303, 3887, 5831, 279841
Offset: 1
Extensions
Edited and 25 replaced by 35 - R. J. Mathar, Aug 24 2009
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Using the equivalent description the rows for prime numbers begin: [2] [2] [3] [6] [5] [10, 30] [7] [42, 70, 42] [11] [110, 66, 66, 154, 330] [13] [78, 286, 390, 78, 130, 546] [17] [34, 510, 714, 442, 510, 1122, 1190, 102] [19] [114, 646, 114, 570, 1330, 1482, 798, 418, 570] 2, 3, 5 and 17 are on the list because the minimum in their row is unique, 7, 11, 19 do not occur because the minimum is more than once in the row.
rad := n -> mul(k, k in numtheory:-factorset(n)): g := (n, k) -> `if`(igcd(n, k) = 1, 1, infinity): L := n -> [seq(g(n, k)*rad(n*k*(n-k)), k=1..n/2)]: isA172121 := n -> nops([ListTools:-SearchAll(min(L(n)), L(n))]) = 1: select(isA172121, [$1..87]); # Peter Luschny, Aug 05 2019
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 isok(n) = {my(v = vector(n\2, k, if (gcd([k, n, n-k]) == 1, rad(k*(n-k)*n), oo))); if (#v, #select(x->(x==vecmin(v)), v) == 1);} \\ Michel Marcus, Aug 06 2019
aa = {}; Do[If[(GCD[x, (x - 1)/2] == 1) && (GCD[x, (x + 1)/2] == 1) && (GCD[(x - 1)/2, (x + 1)/2] == 1), If[SquareFreeQ[(x^2 - 1) x/4], AppendTo[aa, (x + 1)/2]]], {x, 2, 1000}]; aa
aa = {1}; bb = {1}; rr = {}; Do[logmax = 0; k = 2^x; w = Floor[(k - 1)/2]; Do[m = FactorInteger[n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log > logmax, bmin = k - n; amax = n; logmax = log; r = rad], {n, 1, w, 2}]; Print[{x, amax}]; AppendTo[aa, amax]; AppendTo[bb, bmin]; AppendTo[rr, r]; AppendTo[a, {x, logmax}], {x, 2, 15}]; bb (* Artur Jasinski with assistance of M. F. Hasler *)
aa = {1}; bb = {1}; rr = {1}; Do[logmax = 0; k = 2^x; w = Floor[(k - 1)/2]; Do[m = FactorInteger[n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log > logmax, bmin = k - n; amax = n; logmax = log; r = rad], {n, 1, w, 2}]; Print[{x, amax}]; AppendTo[aa, amax]; AppendTo[bb, bmin]; AppendTo[rr, r]; AppendTo[a, {x, logmax}], {x, 2, 15}]; rr (* Artur Jasinski with assistance of M. F. Hasler *)
Comments