cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A129062 T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

Matrix product of Stirling2 with unsigned Stirling1 triangle.
For the subtriangle without column no. m=0 and row no. n=0 see A079641.
The reversed matrix product |S1|. S2 is given in A111596.
As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.
E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.
A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009
Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.
Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  1;
  0,    1;
  0,    2,    1;
  0,    6,    6,    1;
  0,   26,   36,   12,   1;
  0,  150,  250,  120,  20,  1;
  0, 1082, 2040, 1230, 300, 30,  1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> polylog(-n,1/2), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 9;
    t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
    p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
    Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
  • Sage
    def a_row(n):
        s = sum(stirling_number2(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

a(n,m) = Sum_{k=m..n} S2(n,k) * |S1(k,m)|, n>=0; S2=A048993, S1=A048994.
E.g.f. of column k (with leading zeros): (f(x)^k)/k! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).
Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011

Extensions

New name by Peter Luschny, Jun 27 2019

A050354 Number of ordered factorizations of n with one level of parentheses.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 9, 3, 5, 1, 21, 1, 5, 5, 27, 1, 21, 1, 21, 5, 5, 1, 81, 3, 5, 9, 21, 1, 37, 1, 81, 5, 5, 5, 111, 1, 5, 5, 81, 1, 37, 1, 21, 21, 5, 1, 297, 3, 21, 5, 21, 1, 81, 5, 81, 5, 5, 1, 201, 1, 5, 21, 243, 5, 37, 1, 21, 5, 37, 1, 513, 1, 5, 21, 21, 5, 37, 1, 297, 27, 5, 1, 201
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
Dirichlet inverse of (A074206*A153881). - Mats Granvik, Jan 12 2009

Examples

			For n=6, we have (6) = (3*2) = (2*3) = (3)*(2) = (2)*(3), thus a(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    A[n_]:=If[n==1, n/2, 2*Sum[If[dIndranil Ghosh, May 19 2017 *)
  • PARI
    A050354aux(n) = if(1==n,n/2, 2*sumdiv(n,d, if(dA050354aux(d), 0)));
    A050354(n) = if(1==n,n,A050354aux(n)); \\ Antti Karttunen, May 19 2017, after Jovovic's general recurrence.
    
  • Sage
    def A(n): return 1/2 if n==1 else 2*sum(A(d) for d in divisors(n) if dIndranil Ghosh, May 19 2017, after Antti Karttunen's PARI program

Formula

Dirichlet g.f.: (2-zeta(s))/(3-2*zeta(s)).
Recurrence for number of ordered factorizations of n with k-1 levels of parentheses is a(n) = k*Sum_{d|n, d1, a(1)= 1/k. - Vladeta Jovovic, May 25 2005
a(p^k) = 3^(k-1).
a(A002110(n)) = A050351(n).
Sum_{k=1..n} a(k) ~ -n^r / (4*r*Zeta'(r)), where r = 2.185285451787482231198145140899733642292971552057774261555354324536... is the root of the equation Zeta(r) = 3/2. - Vaclav Kotesovec, Feb 02 2019

Extensions

Duplicate comment removed by R. J. Mathar, Jul 15 2010

A154990 Triangle read by rows. Main diagonal is positive. The rest of the terms are negative.

Original entry on oeis.org

1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Mats Granvik, Jan 18 2009

Keywords

Comments

Triangle can be used in matrix inverses. Signs in columns as in A153881.
Iff n is a triangular number, a(n)=1; otherwise, a(n)=-1. (This is explicitly implemented in the second Mathematica program below.) - Harvey P. Dale, Apr 27 2014

Examples

			Table begins:
   1;
  -1,  1;
  -1, -1,  1;
  -1, -1, -1,  1;
  -1, -1, -1, -1,  1;
  -1, -1, -1, -1, -1,  1;
  -1, -1, -1, -1, -1, -1, 1;
		

Crossrefs

Programs

  • Magma
    [k eq n select 1 else -1: k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
  • Maple
    A154990 := proc(n,k)
        option remember;
        if k = n then
            1;
        elif k > n then
            0;
        else
            -1 ;
        end if;
    end proc:
    seq(seq(A154990(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Sep 16 2017
  • Mathematica
    Flatten[Table[PadLeft[{1},n,-1],{n,15}]] (* or *) With[{tr=Accumulate[ Range[ 15]]}, Table[If[MemberQ[tr,n],1,-1],{n,Last[tr]}]] (* Harvey P. Dale, Apr 27 2014 *)
  • Sage
    flatten([[1 if k==n else -1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
    

Formula

From G. C. Greubel, Mar 06 2021: (Start)
T(n, k) = -1 with T(n, n) = 1.
Sum_{k=1..n} T(n, k) = 2-n = -A023443(n-1) = -A023444(n). (End)

A165047 Consider the base-5 Kaprekar map x->K(x) described in A165032. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 48, 45781056, 1992, 7488, 249992, 26648194761946797370910644531056, 170312312, 447082519531056, 953674316406249992, 43487548828124832, 68219378590583801269531056
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 100 base-5 digits):
a(1) = 0 (base 10) = 0 (base 5)
a(2) = 48 (base 10) = 143 (base 5)
a(3) = 45781056 (base 10) = 43204443211 (base 5)
a(4) = 1992 (base 10) = 30432 (base 5)
a(5) = 7488 (base 10) = 214423 (base 5)
a(6) = 249992 (base 10) = 30444432 (base 5)
a(7) = 26648194761946797370910644531056 (base 10) = 432044444444444444444444444444444444444443211 (base 5)
a(8) = 170312312 (base 10) = 322044443222 (base 5)
a(9) = 447082519531056 (base 10) = 432044444444444443211 (base 5)
a(10) = 953674316406249992 (base 10) = 30444444444444444444444432 (base 5)
a(11) = 43487548828124832 (base 10) = 331044444444444444443312 (base 5)
a(12) = 68219378590583801269531056 (base 10) = 4320444444444444444444444444444443211 (base 5)
a(13) = 388774887899923005107893914100714027881532907485961914056 (base 10) = 432222222222222222222222044444444444444444444444444444443222222222222222222222211 (base 5)
a(14) = 4366040229797363281056 (base 10) = 4320444444444444444444444443211 (base 5)
a(15) = 15550995515996920287582474884401599410921335220336914056 (base 10) = 4322222222222222222222222222222222044444444432222222222222222222222222222222211 (base 5)
a(18) = 1705484464764595031738281056 (base 10) = 432044444444444444444444444444444443211 (base 5)
a(20) = 6505906924303417326882481575012207031056 (base 10) = 432044444444444444444444444444444444444444444444444443211 (base 5)
a(21) = 416378043155418708920478820800781056 (base 10) = 432044444444444444444444444444444444444444444443211 (base 5)
a(22) = 39708904567281599895522958831861615180969238281056 (base 10) = 43204444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(23) = 16655121726216748356819152832031056 (base 10) = 4320444444444444444444444444444444444444444443211 (base 5)
a(24) = 1479271969470441337508073405618280737883196707116439938545227050781056 (base 10) = 432044444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(26) = 260236276972136693075299263000488281056 (base 10) = 4320444444444444444444444444444444444444444444444443211 (base 5)
a(27) = 9694556779121484349492909871059964643791317939758300781056 (base 10) = 43204444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(28) = 151477449673773192960826716735311947559239342808723449707031056 (base 10) = 43204444444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(29) = 4066191827689635829301550984382629394531056 (base 10) = 4320444444444444444444444444444444444444444444444444444443211 (base 5)
a(30) = 101654795692240895732538774609565734863281056 (base 10) = 432044444444444444444444444444444444444444444444444444444443211 (base 5)
a(33) = 1588356182691263995820918353274464607238769531056 (base 10) = 432044444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(35) = 992722614182039997388073970796540379524230957031056 (base 10) = 4320444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(36) = 59170878778817653500322936224731229515327868284657597541809082031056 (base 10) = 4320444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(39) = 387782271164859373979716394842398585751652717590332031056 (base 10) = 432044444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(41) = 242363919478037108737322746776499116094782948493957519531056 (base 10) = 4320444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165067 (base 6), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165126 Consider the base-9 Kaprekar map x->K(x) described in A165110. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 16, 2256, 31596672, 34960, 26531651360, 14560721001508880, 8724454714749973651840, 108401672318914272, 711223428647787942432, 16513410921312, 278474880, 4754966263206652084045296, 183696
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 70 base-9 digits):
a(1) = 0 (base 10) = 0 (base 9)
a(2) = 16 (base 10) = 17 (base 9)
a(3) = 2256 (base 10) = 3076 (base 9)
a(4) = 31596672 (base 10) = 65407433 (base 9)
a(5) = 34960 (base 10) = 52854 (base 9)
a(6) = 26531651360 (base 10) = 75430875432 (base 9)
a(7) = 14560721001508880 (base 10) = 77643208887654212 (base 9)
a(8) = 8724454714749973651840 (base 10) = 87654320888888876543211 (base 9)
a(9) = 108401672318914272 (base 10) = 644444418864444443 (base 9)
a(10) = 711223428647787942432 (base 10) = 6444444441886444444443 (base 9)
a(11) = 16513410921312 (base 10) = 64418888886443 (base 9)
a(12) = 278474880 (base 10) = 641888643 (base 9)
a(13) = 4754966263206652084045296 (base 10) = 65544444218888886644444333 (base 9)
a(14) = 183696 (base 10) = 308876 (base 9)
a(15) = 8780535458788649952 (base 10) = 64444441888864444443 (base 9)
a(16) = 8811048483031324779456676539593726674416 (base 10) = 655444442188888888888888888888886644444333 (base 9)
a(18) = 177097392902234856396140027020301600 (base 10) = 7766644432208888888888888766544422212 (base 9)
a(20) = 50771339309018227821951440 (base 10) = 776444432088888887654444212 (base 9)
a(21) = 124998824875093374012011515622478472976 (base 10) = 7544444444444421888888886644444444444432 (base 9)
a(22) = 31197333902107825741164471552 (base 10) = 655444444444308875444444444333 (base 9)
a(23) = 685322163857921701893212141347733334983278765142051291692546183840 (base 10) = 876544444444444432088888888888888888888888888888887654444444444443211 (base 9)
a(25) = 702826002884083319045760971727413317645857409225018391041723392 (base 10) = 655444444444444444443088888888888888888888887544444444444444444333 (base 9)
a(27) = 94116815581356594318021072974737787790560 (base 10) = 7766644432208888888888888888888766544422212 (base 9)
a(28) = 2156904722606587695378609845389399883833898563216184240 (base 10) = 777777655554444333332222210888776666655555444433332111112 (base 9)
a(29) = 26981972242036651232570366433200 (base 10) = 776444444443208888876544444444212 (base 9)
a(31) = 377773874412068206712875872 (base 10) = 6441888888888888888888886443 (base 9)
a(35) = 2520442200659768347220271484032 (base 10) = 65408888888888888888888888887433 (base 9)
a(39) = 1161485426793562822354375723686123973520 (base 10) = 77644444320888888888888888888876544444212 (base 9)
a(40) = 16327050854444484146838503988925985281714578428892247536 (base 10) = 6554444444444444444444442188888866444444444444444444444333 (base 9)
a(46) = 10150412679066664692018845810715370585139195588212689167959856 (base 10) = 7665444444444444444444444422218888666644444444444444444444443222 (base 9)
a(65) = 26152889553714885216926446303415314330076524215805520 (base 10) = 7654308888888888888888888888888888888888888888888754322 (base 9)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165106 (base 8), A151959 (base 10).

A165008 Consider the base-3 Kaprekar map x->K(x) described in A164993. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 32, 320, 26240, 1240024, 11160256, 2297798771761759543384, 15075857741528904364175224, 8135830264, 5931020266096, 659002251784, 350220815692997944
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 200 base-3 digits):
a(1) = 0 (base 10) = 0 (base 3)
a(2) = 32 (base 10) = 1012 (base 3)
a(3) = 320 (base 10) = 102212 (base 3)
a(4) = 26240 (base 10) = 1022222212 (base 3)
a(5) = 1240024 (base 10) = 2022222222211 (base 3)
a(6) = 11160256 (base 10) = 202222222222211 (base 3)
a(7) = 2297798771761759543384 (base 10) = 202222222222222222222222222222222222222222211 (base 3)
a(8) = 15075857741528904364175224 (base 10) = 20222222222222222222222222222222222222222222222222211 (base 3)
a(9) = 8135830264 (base 10) = 202222222222222222211 (base 3)
a(10) = 5931020266096 (base 10) = 202222222222222222222222211 (base 3)
a(11) = 659002251784 (base 10) = 2022222222222222222222211 (base 3)
a(12) = 350220815692997944 (base 10) = 2022222222222222222222222222222222211 (base 3)
a(14) = 480412641554176 (base 10) = 2022222222222222222222222222211 (base 3)
a(15) = 1202547548374693105751742636119782969638250884664 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(18) = 3151987341236981536 (base 10) = 202222222222222222222222222222222222211 (base 3)
a(20) = 1221144477063841253498193544 (base 10) = 202222222222222222222222222222222222222222222222222222211 (base 3)
a(21) = 1675095304614322707130576 (base 10) = 202222222222222222222222222222222222222222222222211 (base 3)
a(22) = 5840696178317563736403001300866976 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(23) = 186121700512702523014504 (base 10) = 2022222222222222222222222222222222222222222222211 (base 3)
a(24) = 133616394263854789527971404013309218848694542736 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(26) = 135682719673760139277577056 (base 10) = 2022222222222222222222222222222222222222222222222222211 (base 3)
a(27) = 3103985417701264389637747414334049249616 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(28) = 2262805369504221740045917865049521902973704 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(29) = 98912702642171141533353677464 (base 10) = 2022222222222222222222222222222222222222222222222222222222211 (base 3)
a(30) = 890214323779540273800183097216 (base 10) = 202222222222222222222222222222222222222222222222222222222222211 (base 3)
a(33) = 648966242035284859600333477874104 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(34) = 1624463421305399727955317383718278234275809671395357663852488383536 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(35) = 52566265604858073627627011707802824 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(36) = 14846266029317198836441267112589913205410504744 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(39) = 344887268633473821070860823814894361064 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(40) = 1166199021234168600322186441674903634837253284669268066647739969989548815584492779042071704 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(41) = 27935868759311379506739726729006443246584 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(42) = 95922940564662548536033536191180611455752285286224474692825586559712504 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(44) = 51765728804119417583918760520852820074569256760349620344 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(46) = 131581537125737377964380708081180536976340583383023970772051559066816 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(48) = 850159086479708909634873915981004749796357644523896420586202438122381086561095235921670275856 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(50) = 10822927935372237951765683725078046726744257962016 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(51) = 97406351418350141565891153525702420540698321658184 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(52) = 50977383456624829456538198506977215332656450244796421055229922546880175495464 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(53) = 7889914464886361466837183435581896063796564054313304 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(55) = 37737216298203055418676776419701705834360988178294873234416 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(60) = 1184233834131636401679426372730624832787065250447215736948464031601384 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(65) = 2228344885192592219417444970806966027813181990940133969619325624 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(69) = 14620170791748597551597856453464504108482287042558218974672395451864 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(74) = 863306465081962936824301825720625503101770567576020272235430279037412576 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(78) = 3010163515730239554579124083638497588178030730504983866890271696470727482831948976 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(81) = 4129168059986611185979594079065154441945172469828510105473623726297294215132984 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(83) = 334462612858915506064347120404277509797558970056109318543363521830080831425772104 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(86) = 243823244774149403920909050774718304642420489170903693218112007414128926109387867456 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(89) = 177747145440354915458342698014769644084324536605588792356003653404899987133743755379064 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(90) = 1599724308963194239125084282132926796758920829450299131204032880644099884203693798411616 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(95) = 94462120719967656626097101775667194421817516058210713398466937569153454062343915102407808424 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(98) = 68862886004856421680424787194461384733504969206435610067482397487912868011448714109655292344736 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)

Crossrefs

In other bases: A153881 (base 2), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165028 Consider the base-4 Kaprekar map x->K(x) described in A165012. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 126, 41958
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 200 base-4 digits):
a(1) = 0 (base 10) = 0 (base 4)
a(2) = 126 (base 10) = 1332 (base 4)
a(3) = 41958 (base 10) = 22033212 (base 4)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165067 Consider the base-6 Kaprekar map x->K(x) described in A165051. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 4305, 16840
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 100 base-6 digits):
a(1) = 0 (base 10) = 0 (base 6)
a(2) = 4305 (base 10) = 31533 (base 6)
a(3) = 16840 (base 10) = 205544 (base 6)
a(6) = 430 (base 10) = 1554 (base 6)
a(7) = 895275 (base 10) = 31104443 (base 6)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165086 Consider the base-7 Kaprekar map x->K(x) described in A165071. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 144, 1068, 9458722410775248, 9936, 55500, 65945195409025452
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 100 base-7 digits):
a(1) = 0 (base 10) = 0 (base 7)
a(2) = 144 (base 10) = 264 (base 7)
a(3) = 1068 (base 10) = 3054 (base 7)
a(4) = 9458722410775248 (base 10) = 5544222066654442212 (base 7)
a(5) = 9936 (base 10) = 40653 (base 7)
a(6) = 55500 (base 10) = 320544 (base 7)
a(7) = 65945195409025452 (base 10) = 55332221066554443312 (base 7)
a(9) = 419850417612 (base 10) = 42222166444443 (base 7)
a(10) = 114965566537586468276798389479111631100827277423731225926928273344 (base 10) = 65444444444444444444444443066666666666666666666666532222222222222222222222211 (base 7)
a(11) = 31412208 (base 10) = 530666532 (base 7)
a(12) = 26884299308652 (base 10) = 5443216666443222 (base 7)
a(13) = 894060461610805641013834968 (base 10) = 54444444322106666665544322222222 (base 7)
a(14) = 1591271424672409468790707489057394638817384701224062547077367141620193382944 (base 10) = 65444444444444444444444444444306666666666666666666666666665322222222222222222222222222211 (base 7)
a(17) = 107837050564847832079804652808012 (base 10) = 55444444332221110666655554443322222212 (base 7)
a(24) = 7598644111289477155212 (base 10) = 54443222221066554444432222 (base 7)
a(25) = 18244344524504743400068812 (base 10) = 544432222222106655444444432222 (base 7)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165106 Consider the base-8 Kaprekar map x->K(x) described in A165090. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 17892, 1589, 21483, 1022, 7034104602, 1445787
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 70 base-8 digits):
a(1) = 0 (base 10) = 0 (base 8)
a(2) = 17892 (base 10) = 42744 (base 8)
a(3) = 1589 (base 10) = 3065 (base 8)
a(4) = 21483 (base 10) = 51753 (base 8)
a(5) = 1022 (base 10) = 1776 (base 8)
a(6) = 7034104602 (base 10) = 64320765432 (base 8)
a(7) = 1445787 (base 10) = 5407633 (base 8)
a(9) = 467364965130 (base 10) = 6632107665412 (base 8)
a(12) = 29921040357642 (base 10) = 663321076654412 (base 8)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165126 (base 9), A151959 (base 10).
Previous Showing 11-20 of 36 results. Next