cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 138 results. Next

A161482 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+151)^2 = y^2.

Original entry on oeis.org

0, 96, 189, 453, 969, 1496, 3020, 6020, 9089, 17969, 35453, 53340, 105096, 207000, 311253, 612909, 1206849, 1814480, 3572660, 7034396, 10575929, 20823353, 40999829, 61641396, 121367760, 238964880, 359272749, 707383509, 1392789753
Offset: 1

Views

Author

Klaus Brockhaus, Jun 13 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A161483.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (187+78*sqrt(2))/151 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (24723+6758*sqrt(2))/151^2 for n mod 3 = 0.

Crossrefs

Cf. A161483, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161484 (decimal expansion of (187+78*sqrt(2))/151), A161485 (decimal expansion of (24723+6758*sqrt(2))/151^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,96,189,453,969,1496,3020},30] (* Harvey P. Dale, Jul 10 2023 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+302*n+22801), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+302 for n > 6; a(1)=0, a(2)=96, a(3)=189, a(4)=453, a(5)=969, a(6)=1496.
G.f.: x*(96+93*x+264*x^2-60*x^3-31*x^4-60*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 151*A001652(k) for k >= 0.

A161486 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+191)^2 = y^2.

Original entry on oeis.org

0, 69, 336, 573, 936, 2449, 3820, 5929, 14740, 22729, 35020, 86373, 132936, 204573, 503880, 775269, 1192800, 2937289, 4519060, 6952609, 17120236, 26339473, 40523236, 99784509, 153518160, 236187189, 581587200, 894769869, 1376600280
Offset: 1

Views

Author

Klaus Brockhaus, Jun 13 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A161487.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (52323+26522*sqrt(2))/191^2 for n mod 3 = 0.

Crossrefs

Cf. A161487, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161488 (decimal expansion of (209+60*sqrt(2))/191), A161489 (decimal expansion of (52323+26522*sqrt(2))/191^2).

Programs

  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],6#[[4]]-First[#]+382}]&,{0,69, 336, 573, 936,2449},40]][[1]]  (* Harvey P. Dale, Apr 01 2011 *)
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,69,336,573,936,2449,3820},40] (* Harvey P. Dale, Mar 29 2016 *)
  • PARI
    {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+382*n+36481), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+382 for n > 6; a(1)=0, a(2)=69, a(3)=336, a(4)=573, a(5)=936, a(6)=2449.
G.f.: x*(69+267*x+237*x^2-51*x^3-89*x^4-51*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 191*A001652(k) for k >= 0.

A219014 Numerators in a product expansion for sqrt(2).

Original entry on oeis.org

6, 6726, 13765255184676885126
Offset: 0

Views

Author

Peter Bala, Nov 09 2012

Keywords

Comments

a(3) has 96 digits and a(4) has 479 digits.
Iterating the algebraic identity sqrt(1 + 4/x) = (1 + 2*(x + 2)/(x^2 + 3*x + 1)) * sqrt(1 + 4/(x*(x^2 + 5*x + 5)^2)) produces a rapidly converging product expansion sqrt(1 + 4/x) = Product_{n >= 0} (1 + 2*a(n)/b(n)), where a(n) and b(n) are integer sequences when x is a positive integer.
The present case is when x = 4. The denominators b(n) are in A219015. See also A219010 (x = 1) and A219012 (x = 2).

Examples

			The first two terms of the product give 18 correct decimal places of sqrt(2): (1 + 2*6/29)*(1 + 2*6726/45232349) = 1.41421 35623 73095 048(5...).
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+1] == a[n]^5 - 5*a[n]^3 + 5*a[n], a[0] == 6}, a, {n, 0, 3}] (* Amiram Eldar, Jul 20 2025 *)

Formula

Let tau = 3 + 2*sqrt(2). Then a(n) = tau^(5^n) + 1/tau^(5^n).
Recurrence equation: a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with initial condition a(0) = 6.

A344576 a(n) = f(n,n) where f(0,n) = f(n,0) = Fibonacci(n) and f(m,n) = f(m-1,n) + f(m,n-1) + f(m-1,n-1).

Original entry on oeis.org

0, 2, 10, 52, 278, 1510, 8288, 45834, 254922, 1424252, 7986550, 44921582, 253320352, 1431678194, 8106897418, 45982821860, 261206625526, 1485765938390, 8461264982176, 48237937154554, 275275548126890, 1572297656021292, 8987888015996790, 51417128080562142
Offset: 0

Views

Author

Keywords

Comments

a(n+1)/a(n) tends to A156035.

Crossrefs

Programs

  • Mathematica
    F[0, 0] = 0; F[m_, 0] := Fibonacci[m]; F[0, n_] := Fibonacci[n];
    F[m_, n_] := F[m, n] =   F[m - 1 , n ] + F[m , n - 1] +  F[m - 1, n - 1];
    Table[F[n, n], {n, 0, 100}]
  • PARI
    \\ here D(n,k) is A008288(n,k).
    D(n, k) = {sum(d = 0, min(n,k), binomial(k, d)*binomial(n+k-d, k))}
    a(n) = {2*sum(k=1, n, fibonacci(k)*(D(n-1,n-k) + D(n-1,n-k-1)))} \\ Andrew Howroyd, May 29 2021

Formula

a(n) = 2*Sum_{k=1..n} Fibonacci(k)*(A008288(n-1,n-k) + A008288(n-1,n-k-1)). - Andrew Howroyd, May 29 2021
G.f.: x*(3*x^2-18*x+3-(x+1)*sqrt(x^2-6*x+1))/((x^2-7*x+1)*(x^2-6*x+1)). - Alois P. Heinz, May 29 2021
a(n) = ((79-97*n+26*n^2)*a(n-1) + (-9+9*n-2*n^2)*a(n-4) + (107-111*n+26*n^2)*a(n-3) + (-322+352*n-88*n^2)*a(n-2)) / (5-7*n+2*n^2) for n >= 4. - José María Grau Ribas, Jun 19 2021

A156568 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1)=23, a(2)=115.

Original entry on oeis.org

23, 115, 667, 3887, 22655, 132043, 769603, 4485575, 26143847, 152377507, 888121195, 5176349663, 30169976783, 175843511035, 1024891089427, 5973503025527, 34816127063735, 202923259356883, 1182723429077563
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009, Feb 16 2009

Keywords

Crossrefs

Second trisection of A156567. Equals 23*A001653.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156569, A156570.

Programs

  • PARI
    {m=19; v=concat([23, 115], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = 23*((2+sqrt(2))*(3-2*sqrt(2))^n +(2-sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: 23*x*(1-x)/(1-6*x+x^2). [corrected by Klaus Brockhaus, Sep 22 2009]
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).

A156569 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1)=37, a(2)=205.

Original entry on oeis.org

37, 205, 1193, 6953, 40525, 236197, 1376657, 8023745, 46765813, 272571133, 1588660985, 9259394777, 53967707677, 314546851285, 1833313400033, 10685333548913, 62278687893445, 362986793811757, 2115642074977097
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009, Feb 16 2009

Keywords

Crossrefs

Third trisection of A156567.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156568, A156570.

Programs

  • Mathematica
    LinearRecurrence[{6,-1},{37,205},30] (* Harvey P. Dale, Aug 18 2014 *)
  • PARI
    {m=19; v=concat([37, 205], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((34+7*sqrt(2))*(3-2*sqrt(2))^n+(34-7*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(37-17*x)/(1-6*x+x^2). [corrected by Klaus Brockhaus, Sep 22 2009]
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).

A156570 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1)=17, a(2)=65.

Original entry on oeis.org

17, 65, 373, 2173, 12665, 73817, 430237, 2507605, 14615393, 85184753, 496493125, 2893773997, 16866150857, 98303131145, 572952636013, 3339412684933, 19463523473585, 113441728156577, 661186845465877, 3853679344638685
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009, Feb 16 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

First trisection of A156567.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156568, A156569.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((74+47*r2)*(3-2*r2)^n+(74-47*r2)*(3+2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ];
    
  • PARI
    {m=20; v=concat([17, 65], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((74+47*sqrt(2))*(3-2*sqrt(2))^n+(74-47*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(17-37*x)/(1-6*x+x^2).

Extensions

G.f. corrected by Klaus Brockhaus, Sep 22 2009

A157348 Positive numbers y such that y^2 is of the form x^2+(x+281)^2 with integer x.

Original entry on oeis.org

229, 281, 365, 1009, 1405, 1961, 5825, 8149, 11401, 33941, 47489, 66445, 197821, 276785, 387269, 1152985, 1613221, 2257169, 6720089, 9402541, 13155745, 39167549, 54802025, 76677301, 228285205, 319409609, 446908061, 1330543681
Offset: 1

Views

Author

Klaus Brockhaus, Apr 12 2009

Keywords

Comments

(-60, a(1)) and (A129626(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+281)^2 = y^2.

Examples

			(-60, a(1)) = (-60, 229) is a solution: (-60)^2+(-60+281)^2 = 3600+48841 = 52441 = 229^2.
(A129626(1), a(2)) = (0, 281) is a solution: 0^2+(0+281)^2 = 78961 = 281^2.
(A129626(3), a(4)) = (559, 1009) is a solution: 559^2+(559+281)^2 = 312481+705600 = 1018081 = 1009^2.
		

Crossrefs

Cf. A129626, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157349 (decimal expansion of (297+68*sqrt(2))/281), A157350 (decimal expansion of (130803+73738*sqrt(2))/281^2).

Programs

  • PARI
    {forstep(n=-60, 200000000, [3, 1], if(issquare(2*n^2+562*n+78961, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=229, a(2)=281, a(3)=365, a(4)=1009, a(5)=1405, a(6)=1961.
G.f.: x*(1-x)*(229+510*x+875*x^2+510*x^3+229*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 281*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (297+68*sqrt(2))/281 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (130803+73738*sqrt(2))/281^2 for n mod 3 = 1.

A157472 Decimal expansion of (627 + 238*sqrt(2))/23^2.

Original entry on oeis.org

1, 8, 2, 1, 5, 1, 7, 6, 3, 2, 9, 7, 6, 9, 3, 1, 2, 3, 1, 7, 8, 6, 0, 1, 4, 9, 6, 4, 7, 6, 7, 3, 1, 2, 1, 7, 9, 0, 1, 6, 2, 2, 2, 8, 8, 5, 3, 3, 0, 2, 7, 1, 5, 3, 3, 8, 6, 7, 7, 6, 8, 9, 5, 5, 8, 4, 4, 6, 0, 1, 7, 5, 7, 7, 9, 5, 8, 0, 6, 1, 9, 1, 3, 9, 2, 0, 4, 5, 8, 0, 9, 3, 9, 5, 0, 4, 4, 7, 9, 0, 7, 5, 7, 9, 0
Offset: 1

Views

Author

Klaus Brockhaus, Mar 12 2009

Keywords

Examples

			(627 + 238*sqrt(2))/23^2 = 1.82151763297693123178...
		

Crossrefs

Cf. A118337, A156567, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156571 (decimal expansion of (27+10*sqrt(2))/23).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (627+238*sqrt(2))/23^2; // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[(627+238Sqrt[2])/23^2,10,120][[1]] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    (627 + 238*sqrt(2))/23^2 \\ G. C. Greubel, Aug 17 2018
    

Formula

Equals (34 + 7*sqrt(2))/(34 - 7*sqrt(2)) = (3+2*sqrt(2))*(10- 2*sqrt(2) )^2/(10+2*sqrt(2))^2.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, where b is A118337.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, where b is A156567.

A157649 Decimal expansion of (387 + 182*sqrt(2))/17^2.

Original entry on oeis.org

2, 2, 2, 9, 7, 1, 2, 3, 4, 7, 2, 3, 8, 4, 1, 9, 7, 1, 9, 3, 1, 4, 5, 5, 8, 2, 9, 6, 9, 0, 7, 1, 4, 5, 5, 0, 2, 7, 6, 7, 0, 5, 9, 7, 9, 6, 9, 5, 0, 1, 8, 8, 7, 5, 1, 9, 6, 5, 9, 3, 6, 7, 2, 0, 8, 1, 0, 7, 7, 2, 7, 0, 2, 6, 9, 9, 3, 2, 0, 0, 0, 3, 7, 0, 5, 0, 8, 8, 3, 4, 3, 4, 1, 7, 4, 0, 7, 4, 9, 5, 6, 3, 2, 4, 3
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

Lim_{n -> infinity} b(n)/b(n-1) = (387 + 182*sqrt(2))/17^2 for n mod 3 = 1, b = A155923.

Examples

			(387 + 182*sqrt(2))/17^2 = 2.22971234723841971931...
		

Crossrefs

Cf. A118120, A155923, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (387 + 182*Sqrt(2))/17^2; // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[(387 + 182*Sqrt[2])/17^2, 10, 100][[1]] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    (387 + 182*sqrt(2))/17^2 \\ G. C. Greubel, Aug 17 2018
    

Formula

Equals (26 + 7*sqrt(2))/(26 - 7*sqrt(2)) = (3 + 2*sqrt(2))/((19 + 6*sqrt(2))/17)^2 = (3 + 2*sqrt(2))*(6 - sqrt(2))^2/(6 + sqrt(2))^2.
Previous Showing 101-110 of 138 results. Next