cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 138 results. Next

A129641 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+409)^2 = y^2.

Original entry on oeis.org

0, 200, 611, 1227, 2291, 4620, 8180, 14364, 27927, 48671, 84711, 163760, 284664, 494720, 955451, 1660131, 2884427, 5569764, 9676940, 16812660, 32463951, 56402327, 97992351, 189214760, 328737840, 571142264, 1102825427, 1916025531, 3328862051, 6427738620
Offset: 1

Views

Author

Mohamed Bouhamida, May 31 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+409, y).
Corresponding values y of solutions (x, y) are in A160577.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (473+168*sqrt(2))/409 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (204819+83570*sqrt(2))/409^2 for n mod 3 = 0.

Crossrefs

Cf. A160577, A001652, A129640, A156035 (decimal expansion of 3+2*sqrt(2)), A160578 (decimal expansion of (473+168*sqrt(2))/409), A160579 (decimal expansion of (204819+83570*sqrt(2))/409^2).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 200, 611, 1227, 2291, 4620, 8180}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+818*n+167281), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+818 for n > 6; a(1)=0, a(2)=200, a(3)=611, a(4)=1227, a(5)=2291, a(6)=4620.
G.f.: x*(200+411*x+616*x^2-136*x^3-137*x^4-136*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 409*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Jun 08 2009

A129974 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+937)^2 = y^2.

Original entry on oeis.org

0, 627, 1128, 2811, 6188, 9027, 18740, 38375, 54908, 111503, 225936, 322295, 652152, 1319115, 1880736, 3803283, 7690628, 10963995, 22169420, 44826527, 63905108, 129215111, 261270408, 372468527, 753123120, 1522797795, 2170907928
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 13 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+937, y).
Corresponding values y of solutions (x, y) are in A160209.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (1179+506*sqrt(2))/937 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (933747+224782*sqrt(2))/937^2 for n mod 3 = 0.

Crossrefs

Cf. A160209, A001652, A129857, A156035 (decimal expansion of 3+2*sqrt(2)), A160210 (decimal expansion of (1179+506*sqrt(2))/937), A160211 (decimal expansion of (933747+224782*sqrt(2))/937^2).

Programs

  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1874*n+877969), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1874 for n > 6; a(1)=0, a(2)=627, a(3)=1128, a(4)=2811, a(5)=6188, a(6)=9027.
G.f.: x*(627+501*x+1683*x^2-385*x^3-167*x^4-385*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 937*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, May 18 2009

A129999 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2.

Original entry on oeis.org

0, 27, 888, 1011, 1148, 6027, 6740, 7535, 35948, 40103, 44736, 210335, 234552, 261555, 1226736, 1367883, 1525268, 7150755, 7973420, 8890727, 41678468, 46473311, 51819768, 242920727, 270867120, 302028555, 1415846568, 1578730083
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+337, y).
Corresponding values y of solutions (x, y) are in A159574.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 0.

Crossrefs

Cf. A159574, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159575 (decimal expansion of (339+26*sqrt(2))/337), A159576 (decimal expansion of (278307+179662*sqrt(2))/337^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,27,888,1011,1148,6027,6740},40] (* Harvey P. Dale, Feb 26 2015 *)
  • PARI
    {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+674*n+113569), print1(n, ",")))}

Formula

a(n)=6*a(n-3)-a(n-6)+674 for n > 6; a(1)=0, a(2)=27, a(3)=888, a(4)=1011, a(5)=1148, a(6)=6027.
G.f.: x*(27+861*x+123*x^2-25*x^3-287*x^4-25*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 337*A001652(k) for k >= 0.
a(0)=0, a(1)=27, a(2)=888, a(3)=1011, a(4)=1148, a(5)=6027, a(6)=6740, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Feb 26 2015

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 16 2009

A130005 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+577)^2 = y^2.

Original entry on oeis.org

0, 35, 1568, 1731, 1908, 10595, 11540, 12567, 63156, 68663, 74648, 369495, 401592, 436475, 2154968, 2342043, 2545356, 12561467, 13651820, 14836815, 73214988, 79570031, 86476688, 426729615, 463769520, 504024467, 2487163856, 2703048243
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+577, y).
Corresponding values y of solutions (x, y) are in A159626.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (579+34*sqrt(2))/577 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (855171+556990*sqrt(2))/577^2 for n mod 3 = 0.

Crossrefs

Cf. A159626, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159627 (decimal expansion of (579+34*sqrt(2))/577), A159628 (decimal expansion of (855171+556990*sqrt(2))/577^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,35,1568,1731,1908,10595,11540},30] (* Harvey P. Dale, May 27 2018 *)
  • PARI
    {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+1154*n+332929), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1154 for n > 6; a(1)=0, a(2)=35, a(3)=1568, a(4)=1731, a(5)=1908, a(6)=10595.
G.f.: x*(35+1533*x+163*x^2-33*x^3-511*x^4-33*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 577*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 21 2009

A130014 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+881)^2 = y^2.

Original entry on oeis.org

0, 43, 2440, 2643, 2860, 16443, 17620, 18879, 97980, 104839, 112176, 573199, 613176, 655939, 3342976, 3575979, 3825220, 19486419, 20844460, 22297143, 113577300, 121492543, 129959400, 661979143, 708112560, 757461019, 3858299320
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+881, y).
Corresponding values y of solutions (x, y) are in A159690.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (883+42*sqrt(2))/881 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (2052963+1343918*sqrt(2))/881^2 for n mod 3 = 0.

Crossrefs

Cf. A159690, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159691 (decimal expansion of (883+42*sqrt(2))/881), A159692 (decimal expansion of (2052963+1343918*sqrt(2))/881^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,43,2440,2643,2860,16443,17620},30] (* Harvey P. Dale, Aug 13 2015 *)
  • PARI
    {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1762*n+776161), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1762 for n > 6; a(1)=0, a(2)=43, a(3)=2440, a(4)=2643, a(5)=2860, a(6)=16443.
G.f.: x*(43+2397*x+203*x^2-41*x^3-799*x^4-41*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 881*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 21 2009

A130608 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+167)^2 = y^2.

Original entry on oeis.org

0, 28, 385, 501, 645, 2668, 3340, 4176, 15957, 19873, 24745, 93408, 116232, 144628, 544825, 677853, 843357, 3175876, 3951220, 4915848, 18510765, 23029801, 28652065, 107889048, 134227920, 166996876, 628823857, 782338053, 973329525, 3665054428, 4559800732
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 17 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+167, y).
Corresponding values y of solutions (x, y) are in A159777.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (171+26*sqrt(2))/167 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (56211+34510*sqrt(2))/167^2 for n mod 3 = 0.

Crossrefs

Cf. A159777, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159778 (decimal expansion of (171+26*sqrt(2))/167), A159779 (decimal expansion of (56211+34510*sqrt(2))/167^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,28,385,501,645,2668,3340},80] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+334*n+27889), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+334 for n > 6; a(1)=0, a(2)=28, a(3)=385, a(4)=501, a(5)=645, a(6)=2668.
G.f.: x*(28+357*x+116*x^2-24*x^3-119*x^4-24*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 167*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A155464 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 0, a(1) = 51, a(2) = 340.

Original entry on oeis.org

0, 51, 340, 2023, 11832, 69003, 402220, 2344351, 13663920, 79639203, 464171332, 2705388823, 15768161640, 91903581051, 535653324700, 3122016367183, 18196444878432, 106056652903443, 618143472542260, 3602804182350151
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

First trisection of A118120. Equals 17*A001652.
Cf. A155465, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[0,51,340]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    LinearRecurrence[{7,-7,1},{0,51,340},30] (* Harvey P. Dale, Jun 10 2013 *)
    Table[17*(LucasL[2*n+1,2] - 2)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=20; v=concat([0, 51, 340], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 0, a(1) = 51.
a(n) = ((1+sqrt(2))*(3+2*sqrt(2))^n + (1-sqrt(2))*(3-2*sqrt(2))^n -2)*(17/4).
G.f.: 17*x*(3-x)/((1-x)*(1-6*x+x^2)).
a(n) = 17*(A002203(2*n+1) - 2)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A155465 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 7, a(1) = 88, a(2) = 555.

Original entry on oeis.org

7, 88, 555, 3276, 19135, 111568, 650307, 3790308, 22091575, 128759176, 750463515, 4374021948, 25493668207, 148587987328, 866034255795, 5047617547476, 29419671029095, 171470408627128, 999402780733707, 5824946275775148
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

Second trisection of A118120. Cf. A001652.
Cf. A155464, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[7,88,555]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    LinearRecurrence[{7,-7,1},{7,88,555},30] (* Harvey P. Dale, Apr 29 2012 *)
    Table[(3*LucasL[2*n+3,2] + 10*LucasL[2*n+1,2] - 34)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=20; v=concat([7, 88, 555], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 7, a(1) = 88.
a(n) = ((31+25*sqrt(2))*(3+2*sqrt(2))^n + (31-25*sqrt(2))*(3-2*sqrt(2))^n - 34)/4.
G.f.: (7+39*x-12*x^2)/((1-x)*(1-6*x+x^2)).
a(n) = (3*A002203(2*n+3) + 10*A002203(2*n+1) - 34)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A155466 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 28, a(1) = 207, a(2) = 1248.

Original entry on oeis.org

28, 207, 1248, 7315, 42676, 248775, 1450008, 8451307, 49257868, 287095935, 1673317776, 9752810755, 56843546788, 331308470007, 1931007273288, 11254735169755, 65597403745276, 382329687301935, 2228380720066368
Offset: 0

Views

Author

Klaus Brockhaus, Jan 30 2009

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).

Crossrefs

Third trisection of A118120. Cf. A001652.
Cf. A155464, A155465, A156035 (decimal expansion of 3+2*sqrt(2)).

Programs

  • Magma
    I:=[28, 207, 1248]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Aug 21 2018
  • Mathematica
    Table[(10*LucasL[2*n+3,2] + 3*LucasL[2*n+1, 2] -34)/4, {n, 0, 50}] (* or *) LinearRecurrence[{7,-7,1}, {28, 207, 1248}, 50] (* G. C. Greubel, Aug 21 2018 *)
  • PARI
    {m=19; v=concat([28, 207, 1248], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
    

Formula

a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 28, a(1) = 207.
a(n) = ((73+53*sqrt(2))*(3+2*sqrt(2))^n + (73-53*sqrt(2))*(3-2*sqrt(2))^n - 34)/4.
G.f.: (28+11*x-5*x^2)/((1-x)*(1-6*x+x^2)).
a(n) = (10*A002203(2*n+3) + 3*A002203(2*n+1) - 34)/4. - G. C. Greubel, Aug 21 2018

Extensions

Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009

A156571 Decimal expansion of (27 + 10*sqrt(2))/23.

Original entry on oeis.org

1, 7, 8, 8, 7, 8, 8, 5, 0, 5, 3, 7, 9, 6, 0, 6, 5, 4, 2, 9, 5, 7, 2, 5, 5, 9, 6, 7, 0, 4, 7, 6, 9, 4, 8, 1, 6, 7, 6, 9, 4, 2, 2, 5, 5, 4, 5, 1, 1, 7, 1, 6, 5, 5, 3, 5, 5, 5, 0, 7, 8, 1, 4, 6, 9, 5, 2, 4, 9, 2, 3, 8, 1, 9, 4, 0, 0, 4, 6, 5, 3, 8, 6, 3, 0, 6, 0, 3, 2, 7, 5, 7, 9, 4, 6, 2, 6, 7, 7, 0, 7, 5, 4, 3, 5
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2009

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n-1) = (27+10*sqrt(2))/23 for n mod 3 = {1, 2}, b = A118337, A156567.
Lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((27+10*sqrt(2))/23)^2 for n mod 3 = 0, b = A118337, A156567.

Examples

			(27 + 10*sqrt(2))/23 = 1.78878850537960654295...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)).

Programs

  • Magma
    (27+10*Sqrt(2))/23; // G. C. Greubel, Jan 27 2018
  • Mathematica
    RealDigits[(27 + 10*Sqrt[2])/23, 10, 100][[1]] (* G. C. Greubel, Jan 28 2018 *)
  • PARI
    (27+10*sqrt(2))/23 \\ G. C. Greubel, Jan 27 2018
    
Previous Showing 51-60 of 138 results. Next