cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A261520 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3^k).

Original entry on oeis.org

1, 6, 36, 200, 1038, 5160, 24776, 115632, 527172, 2355998, 10349448, 44783064, 191211512, 806737800, 3367294320, 13918479872, 57020736942, 231697484304, 934399998412, 3742041461976, 14888854356840, 58881590423856, 231542984619720, 905666813058384
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 23 2015

Keywords

Comments

Convolution of A144067 and A256142.
In general, for m > 1, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(m^k), then a(n) ~ m^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(m^(2*j)-1)).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(3^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 3^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(3^(2*j)-1)) = 0.0887630729103166089354170592729856346...

A285447 Expansion of Product_{k>=1} ((1 + x^(3*k)) / (1 - x^k))^k.

Original entry on oeis.org

1, 1, 3, 7, 14, 27, 56, 101, 190, 347, 617, 1082, 1895, 3230, 5490, 9226, 15332, 25259, 41356, 67021, 107989, 172789, 274613, 433815, 681650, 1064661, 1654739, 2559029, 3938438, 6033967, 9205152, 13982675, 21156174, 31886290, 47879210, 71636483, 106814323
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(3*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 2^(-4/3) * 3^(2/3) * (13*Zeta(3))^(1/3) * n^(2/3)) * (13*Zeta(3))^(7/36) / (A * 2^(7/9) * 3^(25/36) * sqrt(Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A261389 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3*k).

Original entry on oeis.org

1, 6, 30, 128, 486, 1704, 5604, 17484, 52206, 150118, 417696, 1128984, 2973476, 7650720, 19272432, 47616568, 115570014, 275921460, 648771802, 1503889488, 3439990344, 7770915816, 17349229908, 38306180052, 83694778556, 181052778078, 387976101432, 823939048560
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A255610 and A027346.
In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(t*k) and t>=1, then a(n) ~ exp(t/12 + 3/2 * (7*t*Zeta(3)/2)^(1/3) * n^(2/3)) * t^(1/6 + t/36) * (7*Zeta(3))^(1/6 + t/36) / (A^t * 2^(2/3 + t/9) * sqrt(3*Pi) * n^(2/3 + t/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Cf. A156616 (t=1), A261386 (t=2).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/4 + 3/2 * (21*Zeta(3)/2)^(1/3) * n^(2/3)) * (7*Zeta(3)/3)^(1/4) / (2 * A^3 * sqrt(Pi) * n^(3/4)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A261452 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k-1).

Original entry on oeis.org

1, 2, 8, 24, 66, 176, 448, 1096, 2608, 6042, 13664, 30280, 65856, 140800, 296432, 615264, 1260306, 2550368, 5102616, 10101000, 19797344, 38439088, 73976160, 141179480, 267300752, 502283714, 937077808, 1736296304, 3196144032, 5846632656, 10631038400
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2015

Keywords

Comments

Convolution of A253289 and A255835.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(1/3) * (7*Zeta(3))^(1/18) * exp(1/6 - Pi^4/(672*Zeta(3)) - Pi^2 * n^(1/3)/(4*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * sqrt(3) * n^(5/9)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A285446 Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(3*k)))^k.

Original entry on oeis.org

1, 1, 2, 6, 9, 18, 36, 60, 105, 191, 314, 528, 896, 1447, 2355, 3831, 6071, 9619, 15207, 23648, 36693, 56724, 86762, 132264, 200853, 302699, 454565, 680061, 1011540, 1499363, 2214570, 3255796, 4770830, 6967967, 10137577, 14703909, 21262751, 30644816, 44041843
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(3*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 2^(-4/3) * (93*Zeta(3))^(1/3) * n^(2/3)) * (31*Zeta(3))^(7/36) / (A * 2^(7/9) * 3^(29/36) * sqrt(Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A285460 Expansion of Product_{k>=1} ((1 + x^(4*k)) / (1 - x^k))^k.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 51, 92, 175, 308, 554, 957, 1670, 2820, 4778, 7940, 13169, 21511, 35032, 56405, 90453, 143716, 227342, 356950, 557977, 866588, 1340109, 2060912, 3156274, 4810016, 7301490, 11034661, 16614681, 24916208, 37234864, 55440054, 82274277
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(4*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * 2^(-8/3) * (67*Zeta(3))^(1/3) * n^(2/3)) * (67*Zeta(3))^(7/36) / (A * 2^(14/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A295792 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k).

Original entry on oeis.org

1, 2, 6, 28, 152, 1008, 7936, 70208, 689664, 7618816, 92013824, 1202362368, 17053410304, 258928934912, 4197838491648, 72840915607552, 1334630802489344, 25799982480556032, 527187369241870336, 11292834065764450304, 253498950169144590336, 5965951790211865772032, 146341359815078034538496
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2017

Keywords

Comments

Convolution of A028342 and A168243. - Vaclav Kotesovec, Sep 07 2018

Crossrefs

Programs

  • Maple
    a:=series(mul(((1+x^k)/(1-x^k))^(1/k),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(2*Sum_{k>=1} A001227(k)*x^k/k).
E.g.f.: exp(Sum_{k>=1} A054844(k)*x^k/k).

A261563 Expansion of Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1744, 4892, 13248, 34868, 89296, 223660, 548928, 1323060, 3137520, 7332332, 16907584, 38517444, 86777328, 193523404, 427562816, 936555044, 2035286576, 4390850268, 9409096576, 20037827876, 42429318480, 89369282460, 187325508288
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^(2*k)/(2*k-1)*x^(2*k-1)/(1 - x^(2*k-1))^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, (2^d - (-2)^d) * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = 2 * Product_{j>=1} ((1 + 1/2^j)/(1 - 1/2^j))^(j+1) = 1021.5383556752320172813996404366861329314041364322798995039038143325883...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} (2^d - (-2)^d) * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A285461 Expansion of Product_{k>=1} ((1 + x^(5*k)) / (1 - x^k))^k.

Original entry on oeis.org

1, 1, 3, 6, 13, 25, 49, 89, 166, 295, 526, 909, 1571, 2657, 4475, 7432, 12257, 20000, 32436, 52126, 83285, 132057, 208221, 326202, 508372, 787777, 1214828, 1863932, 2847020, 4328765, 6554359, 9882795, 14843999, 22210386, 33112817, 49192218, 72834243
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} ((1 + x^(m*k)) / (1 - x^k))^k, then a(n, m) ~ exp(1/12 + 3 * 2^(-4/3) * (4 + 3/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * (4 + 3/m^2)^(7/36) * Zeta(3)^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

Crossrefs

Cf. A156616 (m=1), A285462 (m=2), A285447 (m=3), A285460 (m=4).
Cf. A024789.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(5*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (103*Zeta(3))^(1/3) * n^(2/3)) * (103*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(7/18) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A285462 Expansion of Product_{k>=1} ((1 + x^(2*k)) / (1 - x^k))^k.

Original entry on oeis.org

1, 1, 4, 7, 18, 32, 72, 127, 257, 454, 861, 1497, 2719, 4654, 8171, 13781, 23564, 39159, 65559, 107455, 176712, 286000, 463200, 740910, 1184123, 1873656, 2959376, 4636145, 7245680, 11246590, 17409731, 26792371, 41114202, 62769820, 95553779, 144803917
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(2*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * (19*Zeta(3))^(1/3) * n^(2/3) / 4) * (19*Zeta(3))^(7/36) / (A * 2^(7/6) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
Previous Showing 11-20 of 50 results. Next